ND4J/Deeplearning4j: Added support for CUDA 9.2. Dropped support for CUDA 9.1. (1.0.0-beta2 release has CUDA 8.0, 9.0 and 9.2 support)
Deeplearning4j resource (datasets, pretrained models) storage directory can now be configured via DL4JResources.setBaseDirectory
method or org.deeplearning4j.resources.directory
system property
ND4J: all indexing is now done with longs instead of ints to allow for arrays with dimensions and lengths greater than Integer.MAX_VALUE (approx. 2.1 billion)
ND4J: nd4j-native-platform will now use Intel MKL-DNN as the default/bundled BLAS implementation (replacing OpenBLAS as the previous default)
Deeplearning4j: Added Out-of-memory (OOM) crash dump reporting functionality. Provides a dump with memory use and configuration if training/inference OOMs (to assist with debugging and tuning memory configuration).
Added new SameDiff layers (automatic differentiation - only single class, forward pass definition required) to DL4J with full training support - SameDiffLayer, SameDiffVertex, SameDiffOutputLayer, SameDiffLambdaLayer, SameDiffLambdaVertex - note that these are CPU-only execution for now Link Link Link
Resource (datasets, pretrained models) storage directory can now be configured via DL4JResources.setBaseDirectory
method or org.deeplearning4j.resources.directory
system property. Note that it is also possible to set a different base location for downloads (for local mirrors of DL4J resources) Link
Added Out-of-memory (OOM) crash dump reporting functionality. Provides a dump with memory use and configuration if training/inference OOMs. Same information is available (without a crash) for MultiLayerNetwork/ComputationGraph.memoryInfo methods. Can be disabled (or output directory set) using system properties - Link
Added Composite[Multi]DataSetPreProcessor to enable multiple [Multi]DataSetPreProcessors to be applied in a single iterator Link
Added ComputationGraph evaluate methods for multi-output networks: evaluate(DataSetIterator, Map<Integer,IEvaluation[]>)
and evaluate(MultiDataSetIterator, Map<Integer,IEvaluation[]>)
Link
Added JointMultiDataSetIterator - utility iterator used to create MultiDataSetIterator from multiple DataSetIterators Link
GraphVertices may now have trainable parameters directly (not just enclose layers with trainable parameters) Link
Added MultiLayerNetwork/ComputationGraph getLearningRate methods Link
Added cyclical "1cycle" schedule for learning rate schedules etc - Link
RDD repartitioning for Spark training is more configurable (adds Repartitioner interface) Link
Added ComputationGraph.getIterationCount() and .getEpochCount() for consistency with MultiLayerNetwork Link
Spark evaluation: added evaluation method overloads that allow specifying the number of evaluation workers (less than number of Spark threads) Link
CnnSentenceDataSetIterator now has a Format argument, and supports outputting data for RNNs and 1D CNNs Link
Added ComputationGraph/MultiLayerNetwork.pretrain((Multi)DataSetIterator, int epochs)
method overloads Link
EmbeddingSequenceLayer now supports [minibatch,1,seqLength]
format sequence data in addition to [minibatch,seqLength]
format data Link
CuDNN batch norm implementation will now be used for rank 2 input, not just rank 4 input Link
MultiLayerNetwork and ComputationGraph output/feedForward/fit methods are now thread-safe via synchronization. Note that concurrent use is not recommended due to performance (instead: use ParallelInference); however the now-synchronized methods should avoid obscure errors due to concurrent modifications Link
BarnesHutTSNE now throws a useful exception in the case where the distance metric is undefined (for example, all zeros plus cosine similarity) Link
BatchNormalization layer now correctly asserts that nOut is set if required (instead of unfriendly shape errors later) Link
Fixed issue where OutputLayer may not initialize parameter constraints correctly Link
Fixed performance issue with Nesterov updater using CPU-only op for CUDA execution Link
Removed TerminationCondition for DL4J optimizers - was not used in practice, and had minor overhead Link
Fixed issue where EvaluativeListener could hit a workspace validation exception when workspaces are enabled Link
Fixed issue where TrainingListener.onEpochStart/onEpochEnd were not being called correctly for ComputationGraph Link
Fixed workspace issue with TensorFlowCnnToFeedForwardPreProcessor Link
Performance optimization for BatchNormalization when using CuDNN Link
Performance optimization: Dropout will be applied in-place when safe to do so, avoiding a copy Link
Added CuDNN implementation of Dropout Link
Reduced memory use for CuDNN: CuDNN working memory is now shared and reused between layers within a network Link
CuDNN batch normalization implementation would fail with FP16 datatype Link
Fixed issue Bidirectional LSTM may incorrectly use workspaces causing an exception Link
Fixed issue with early stopping where scores to be maximized (accuracy, f1, etc) were not properly triggering termination conditions Link
Fixed issue where label mask counter could be incorrectly incremented in ComputationGraph.computeGradientAndScore() Link
ComputationGraph was not setting lastEtlTime field during training Link
Fixed issue with AutoEncoder layer when workspaces are enabled Link
Fixed issue with EmbeddingSequenceLayer use of mask arrays Link
Lombok is now provided scope everywhere, isn't on user classpath when using DL4J Link
Fixed issue where WordVectorSerializer.readParagraphVectors(File) initialization of label source Link
Spark training (gradient sharing) now properly handles empty partition edge case when encountered during training Link
Errors are propagated better/more consistently for Spark gradient sharing training Link
Fixed issue with 1D CNN layers with mask arrays and stride > 1 (masks not being correctly downsized) Link
DL4J Batch norm implementation was not correctly adding epsilon value during inference, only during training (CuDNN unaffected) Link
CuDNN subsampling layers with max pooling and ConvolutionMode.SAME may have taken padding value (0) as the maximum for border values when all non-padding values are less than 0 Link
Spark training with gradient sharing now passes listeners to workers correctly Link
Fixed rare (and non-terminal) concurrent modification issue with UI and FileStatsStorage Link
CuDNN convolution layer now supports dilation > 2 (previously: used DL4J conv layer implementation as a fallback) Link
Yolo2OutputLayer now implements computeScoreForExamples() Link
SequenceRecordReeaderDataSetIterator now handles the "no labels" case correctly Link
Fixed issue where BarnesHutTSNE could hit a workspace validation exception Link
EMNIST iterator could produce incorrect data in some cases after a reset Link
GravesLSTM has been deprecated in favor of LSTM due to lack of CuDNN support but otherwise similar accuracy to in practice. Use LSTM class instead.
deeplearning4j-modelexport-solr: now uses Lucene/Solr version 7.4.0 (was 7.3.0) Link
Mask arrays for CNN2d layers must be in broadcastable 4d format: [minibatch,depth or 1, height or 1, width or 1]
- previously they were 2d with shape [minibatch,height]
or [minibatch,width]
. This provents ambiguity in later cases (pooling layers), and allows for more complex masking scenarios (such as masking for different image sizes in same minibatch). Link
Some older/deprecated Model and Layer methods have been removed. (validateInput(), initParams()). Some custom layers may need to be updated as a result Link
Windows users are unable to load the HDF5 files used in SvhnLabelProvider (used in HouseNumberDetection example). Linux/Mac users are unaffected. A workaround for windows users is to add the sonatype snapshot dependency org.bytedeco.javacpp-presets:hdf5-platform:jar:1.10.2-1.4.3-SNAPSHOT
Link
Keras model import now imports every Keras application
Supports GlobalPooling3D layer import
Supports RepeatVector layer import
Supports LocallyConnected1D and LocallyConnected2D layers
Keras Lambda layers can now be imported by registering custom SameDiff layers
All Keras optimizers are now supported
All advanced activation functions can now be imported.
Many minor bugs have been fixed, including proper weight setting for all configurations of BatchNormalization, improvements to Reshape SeparableConvolution2D, and full support of Bidirectional layers.
ND4J: all indexing is now done with longs instead of ints to allow for arrays with dimensions and lengths greater than Integer.MAX_VALUE (approx. 2.1 billion)
Added the ability to write Numpy .npy format using Nd4j.writeAsNumpy(INDArray,File)
and convert an INDArray to a numpy strict in-memory using Nd4j.convertToNumpy(INDArray)
Link
ND4j-common ClassPathResource: added ClassPathResource.copyDirectory(File) Link
SameDiff: A significant number of new ops, and backprop implementations for existing ops
Added Nd4j.randomBernoulli/Binomial/Exponential convenience methods Link
Added way to disable/suppress ND4J initialization logging via org.nd4j.log.initialization
system property Link
SameDiff class - most op/constructor methods now have complete/useful javadoc Link
Workspaces can now be disabled globally, ignoring workspace configuration. This is mainly used for debugging; use Nd4j.getWorkspaceManager().setDebugMode(DebugMode.DISABLED)
or Nd4j.getWorkspaceManager().setDebugMode(DebugMode.SPILL_EVERYTHING);
to enable this. Link [Link]
Added EnvironmentalAction API for environment variable processing Link
SameDiff: a significant number of bug fixes for execution and individual ops
Fixed issue where INDArray.toDoubleArray() with true scalars (rank 0 arrays) Link
Fixed issue with DataSet.sample() not working for rank 3+ features Link
IActivation implementations now validate/enforce same shape for activations and gradients Link
Fixed issue with muliColumnVector where vector is 1d Link
ImagePreProcessingScaler now supports serialization via NormalizerSerializerStrategy and ModelSerializer Link
Performance optimization for threshold encoding used in DL4J's Spark gradient sharing distributed training implementation Link
SameDiff: Fixed issue where memory wasn't always released after execution Link
DataSet.save() and MultiDataSet.save() methods now save example metadata when present Link
Fixed issue with KFoldIterator when dataset does not divide equally into folds with no remainder Link
Fixed issue where version check functionality could fail to load resources if resources are on a path with spaces Link
CUDA 9.1 support has been removed. CUDA 8.0, 9.0 and 9.2 support is available
Due to long indexing changes, long/long[] should be used in place of int/int[] in some places (such as INDArray.size(int), INDArray.shape())
Simplified DataSetIterator API: totalExamples(), cursor() and numExamples() - these were unsupported on most DataSetIterator implementations, and not used in practice for training. Custom iterators should remove these methods also Link
Long-deprecated DataSet.getFeatureMatrix() has been removed. Use DataSet.getFeatures() instead. Link
Unused and not properly tested/maintained utility class BigDecimalMath has been removed. Users should find an aternative library for this functionality, if required.
Not properly maintained complex number support classes (IComplexNumber, IComplexNDArray) have been removed entirely Link
Added AnalyzeLocal class to mirror functionality of AnalyzeSpark (but without Spark dependency) Link
Added JacksonLineSequenceRecordReader: RecordReader used for multi-example JSON/XML where each line in a file is an independent example Link
Added RecordConvert.toRecord(Schema, List<Object>)
Link
Added missing FloatColumnCondition Link
Added CSVLineSequenceRecordReader for "each line in CSV is a sequence, and sequence is single-valued/univariate" Link
Added CSVMultiSequenceRecordReader for "multiple multi-valued sequences in a single CSV" data Link
Fixed issue with NativeImageLoader on Android Link
Fixed issue with ExcelRecordReader Link
Fixed issue where bad args for CSVRecordReader.next(int)
could cause an unnecessarily large list to be generated Link
Added DataSource interface. Unlike old DataProvider, this does not require JSON serializability (only a no-arg constructor) Link
DataProvider has been deprecated. Use DataSource instead.