Loading...
Adds proper support for java 9 modules: https://github.com/eclipse/deeplearning4j/pull/9631 https://github.com/eclipse/deeplearning4j/pull/9626
As part of the same work flatbuffers has been upgraded to 1.12.1. This affects the samediff file format and the user interfaces. Flatbuffers as a file format is forwards and backwards compatible but if you have any issues please do let us know. The relevant files have been updated using the flatc compiler.
Removed rl4j: in continuing to cut unmaintained modules, the 1.0 will focus the framework on a few key use cases. This invites other folks to build external modules for a tightly maintained core that focuses on deployment, framework interop and training models in java.
Added new model zoo module called omnihub for dl4j and new samediff models. These can be found here: https://github.com/KonduitAI/omnihub-zoo See more in the new omnihub section.
Migrated the snapshots to sonatype's new repository https://s01.oss.sonatype.org. More context can be found here: https://twitter.com/Brian_Fox/status/1357414532512104448 https://github.com/eclipse/deeplearning4j/pull/9618
Consolidated tests to platform-tests to allow for easy testing of behavior against different backends.
Adds proper support for jetson nano with curated binaries and an updated cuda 10.2
Adds Spark 3 support: https://github.com/eclipse/deeplearning4j/pull/9444
Reduce binary size using selective compilation: https://github.com/eclipse/deeplearning4j/pull/9443
https://github.com/eclipse/deeplearning4j/pull/9451 Remove scala 11 support. Only supporting scala 2.12: https://github.com/eclipse/deeplearning4j/pull/9440
Extensive enhancements for samediff model training: https://github.com/eclipse/deeplearning4j/pull/9501
Add beginnings of graph optimization framework: https://github.com/eclipse/deeplearning4j/pull/9402
Many onnx model import improvements (add new ops): https://github.com/eclipse/deeplearning4j/pull/9411 https://github.com/eclipse/deeplearning4j/pull/9489https://github.com/eclipse/deeplearning4j/pull/9475 https://github.com/eclipse/deeplearning4j/pull/9526 https://github.com/eclipse/deeplearning4j/pull/9502https://github.com/eclipse/deeplearning4j/pull/9587 https://github.com/eclipse/deeplearning4j/pull/9599
Add new op subset frameworks: allows selective inclusion of operations to enable users to reduce binary size: https://github.com/eclipse/deeplearning4j/pull/9443 https://github.com/eclipse/deeplearning4j/pull/9451 https://github.com/eclipse/deeplearning4j/pull/9569
Add updated jetson nano support: https://github.com/eclipse/deeplearning4j/pull/9432
Enhance codegen exposing more functions for samediff: https://github.com/eclipse/deeplearning4j/pull/9478 https://github.com/eclipse/deeplearning4j/pull/9503 https://github.com/eclipse/deeplearning4j/pull/9500
Add new samediff eager mode (mainly used for model import use cases): https://github.com/eclipse/deeplearning4j/pull/9538 https://github.com/eclipse/deeplearning4j/pull/9535 https://github.com/eclipse/deeplearning4j/pull/9533
Add dimensions as input variables: https://github.com/eclipse/deeplearning4j/pull/9584
Update samediff api to allow dimensions as variables
Fix up conditions/matching: https://github.com/eclipse/deeplearning4j/pull/9551
ImageResize updates to improve compatibility with onnx: https://github.com/eclipse/deeplearning4j/pull/9495
Rewrite compat sparse to dense op: https://github.com/eclipse/deeplearning4j/pull/9566
Fix creation of string scalar ndarrays: https://github.com/eclipse/deeplearning4j/pull/9556
Fix serialization with conv/pooling3d: https://github.com/eclipse/deeplearning4j/pull/9648
Add Spark 3 support: https://github.com/eclipse/deeplearning4j/pull/9553
Added Deconvolution3D for keras import https://github.com/eclipse/deeplearning4j/pull/9399
Add full channels last support for 3d convolutions: https://github.com/eclipse/deeplearning4j/pull/9578
Fix confusion matrix count increments: https://github.com/eclipse/deeplearning4j/pull/9553
Fix Conv3D data format serialization: https://github.com/eclipse/deeplearning4j/pull/9648
Add LabelsSource to BagOfWordsVectorizer (thanks to XAI!): https://github.com/eclipse/deeplearning4j/pull/9624
Performance enhancement for mnist related datasetiterators: https://github.com/eclipse/deeplearning4j/pull/9612
Fix memory leak in datavec-arrow: https://github.com/eclipse/deeplearning4j/pull/9441
Launches new Omnihub module. Allows access to models from: https://github.com/KonduitAI/omnihub-zoo
A pretrained omnihub module will provide access to pretrained samediff and dl4j modules. This will also supplant the old dl4j zoo.
Modules will be made available from a Pretrained class:https://github.com/eclipse/deeplearning4j/blob/feb8eee5eb07239c49a4d14786114dc0394aad4e/omnihub/src/main/java/org/eclipse/deeplearning4j/omnihub/models/Pretrained.java#L30
Clean up tests/consolidate tests to platform-tests
A number of bug fixes following the M1 release, thanks to the feedback from the community, allowed us to quickly sort out a few issues. This is a minor bug fix release to address short comings found with M1. Most fixes were related to keras import, the cnn/rnn helpers, and python4j.
Snapshots will also be published every 2 days automatically now https://github.com/eclipse/deeplearning4j/pull/9355 to get around sonatype ossrh deletion of snapshots every 3 days. This should increase robustness of the snapshots.
Worked around an issue with github actions pre emptively upgrading visual studio breaking the cuda builds: https://github.com/eclipse/deeplearning4j/pull/9364
Added backwards compatibility for centos 6 via a new linux-x86_64-compat classifier enabling use of older glibcs on centos 7:
https://github.com/eclipse/deeplearning4j/pull/9368 https://github.com/eclipse/deeplearning4j/pull/9368https://github.com/eclipse/deeplearning4j/pull/9373
A number of bugs were fixed with LSTM and CUDNN: https://github.com/eclipse/deeplearning4j/pull/9372
https://github.com/eclipse/deeplearning4j/issues/9142 - avoid shuffle operations on gpu. Pre save data on cpu in mini batches. For more help, please post on the forums at https://community.konduit.ai/
Add batch normalization support for RNNs: https://github.com/eclipse/deeplearning4j/pull/9338
Disable old helpers by default https://github.com/eclipse/deeplearning4j/pull/9343
Minor unit test fixes: https://github.com/eclipse/deeplearning4j/pull/9346
Add keras support for cnn 1d NWHC: https://github.com/eclipse/deeplearning4j/pull/9353
Move the warning about version check to tracing so it stops logging this during normal usage confusing users: https://github.com/eclipse/deeplearning4j/pull/9356
Allow 1d convolutions to accept feed forward as input type: https://github.com/eclipse/deeplearning4j/pull/9365
Remove the old benchmark suite and migrate it to contrib: https://github.com/eclipse/deeplearning4j/pull/9374
Remove old MKLDNNLSTM helper (it never fully functioned anyways): https://github.com/eclipse/deeplearning4j/pull/9381
Fixed an issue with helper reflection ensuring the classes would be loaded properly https://github.com/eclipse/deeplearning4j/pull/9333 https://github.com/eclipse/deeplearning4j/pull/9350
Fix minor workspace activation bug: https://github.com/eclipse/deeplearning4j/pull/9341
Fixed compilation error when running anything more than jdk 8 and NIO buffers: https://github.com/eclipse/deeplearning4j/pull/9351
Move logback to be a test dependency for some modules: https://github.com/eclipse/deeplearning4j/pull/9362
Keras model import fixes for GlobalPooling: https://github.com/eclipse/deeplearning4j/pull/9378 https://github.com/eclipse/deeplearning4j/pull/9384
Add Eigen op as public ensuring easier use when running eigenvalue decomposition https://github.com/eclipse/deeplearning4j/pull/9328
Fixes minor issue with choice(..) op https://github.com/eclipse/deeplearning4j/pull/9360 thanks to https://github.com/Romira915
Minor applyScalar typo fix: https://github.com/eclipse/deeplearning4j/pull/9385
Fixed serialization bug with StringToTimeTransform: https://github.com/eclipse/deeplearning4j/pull/9377 thanks to community member https://github.com/yumg
Made python4j's python path setting more robust by migrating from set path calls to add path calls: https://github.com/eclipse/deeplearning4j/pull/9386
Fixes bug with numpy import array jvm crashes: https://github.com/eclipse/deeplearning4j/pull/9348
Fixed inconsistent conventions between SameDiffVariable getArr and getArrForName().. https://github.com/eclipse/deeplearning4j/pull/9357
Loading...
Loading...
Loading...
Loading...
Loading...
Loading...
Loading...
Loading...
Loading...
Loading...
Loading...
Loading...
Loading...
Loading...
Loading...
Loading...
Loading...
Loading...
Loading...
Loading...
Loading...
Loading...
Loading...
Loading...
Loading...
Loading...
Loading...
Loading...
Loading...
Loading...
Loading...
Loading...
Loading...
Loading...
Loading...
Loading...
Loading...
Loading...
Loading...
Loading...
Loading...
Loading...
Loading...
Loading...
Loading...
Loading...
Loading...
Loading...
Loading...
Loading...
Loading...
Loading...
Loading...
Loading...
Loading...
Loading...
Loading...
Loading...
Loading...
Loading...
Loading...
Loading...
Loading...
Loading...
Loading...
Loading...
Loading...
Loading...
Loading...
Loading...
Loading...
Loading...
Loading...
Loading...
Loading...
Loading...
Loading...
Loading...
Loading...
Loading...
Loading...
Loading...
Loading...