Loading...
Loading...
Loading...
Loading...
Loading...
Loading...
Loading...
支持的Keras权重初始化器
DL4J 支持所有可用的 Keras 初始化器, 名称为:
Zeros
Ones
Constant
RandomNormal
RandomUniform
TruncatedNormal
VarianceScaling
Orthogonal
Identity
lecun_uniform
lecun_normal
glorot_normal
glorot_uniform
he_normal
he_uniform
从Keras 到 DL4J的初始化器映射可以从 KerasInitilizationUtils中找到。
已支持的Keras优化器
支持的优化器 支持所有标准的Keras优化器,但是导入自定义TensorFlow优化器将不能工作:
SGD
RMSprop
Adagrad
Adadelta
Adam
Adamax
Nadam
TFOptimizer
支持的Keras功能。
鲜为人知的事实:DL4J的创始人,Skymind,在我们的团队中拥有前五名的Keras贡献者中的两个,使其成为继Keras的创始人Francois Chollet之后对Keras的最大贡献者。 虽然并非DL4J中的每个概念在Keras中都有等效的概念,反之亦然,但是许多关键概念可以匹配。将Keras模型导入DL4J是在我们的deeplearning4j-modelimport 模块中完成的。下面是当前支持的特性的综合列表。
层
损失
激活函数
初始化器
正则化器
约束
度量
优化器
将模型映射到DL4J层是在模型导入的层子模块中完成的。该项目的结构随意地反映了Keras的结构。
❌ GRU
✅ LSTM
❌ ConvLSTM2D
✅ Add / add
✅ Multiply / multiply
✅ Subtract / subtract
✅ Average / average
✅ Maximum / maximum
✅ Concatenate / concatenate
❌ Dot / dot
✅ PReLU
✅ ELU
❌ TimeDistributed
✅ mean_squared_error
✅ mean_absolute_error
✅ mean_absolute_percentage_error
✅ mean_squared_logarithmic_error
✅ squared_hinge
✅ hinge
✅ categorical_hinge
❌ logcosh
✅ categorical_crossentropy
✅ sparse_categorical_crossentropy
✅ binary_crossentropy
✅ kullback_leibler_divergence
✅ poisson
✅ cosine_proximity
✅ softmax
✅ elu
✅ selu
✅ softplus
✅ softsign
✅ relu
✅ tanh
✅ sigmoid
✅ hard_sigmoid
✅ linear
✅ Zeros
✅ Ones
✅ Constant
✅ RandomNormal
✅ RandomUniform
✅ TruncatedNormal
✅ VarianceScaling
✅ Orthogonal
✅ Identity
✅ lecun_uniform
✅ lecun_normal
✅ glorot_normal
✅ glorot_uniform
✅ he_normal
✅ he_uniform
✅ l1
✅ l2
✅ l1_l2
✅ max_norm
✅ non_neg
✅ unit_norm
✅ min_max_norm
✅ SGD
✅ RMSprop
✅ Adagrad
✅ Adadelta
✅ Adam
✅ Adamax
✅ Nadam
❌ TFOptimizer
支持的损失函数
DL4J支持所有可用的Keras损失函数(除了logcosh),即:
mean_squared_error
mean_absolute_error
mean_absolute_percentage_error
mean_squared_logarithmic_error
squared_hinge
hinge
categorical_hinge
logcosh
categorical_crossentropy
sparse_categorical_crossentropy
binary_crossentropy
kullback_leibler_divergence
poisson
cosine_proximity
Keras的损失函数映射可在KerasLossUtils中找到。
已支持的Keras约束。