Deeplearning4j
Community ForumND4J JavadocDL4J Javadoc
EN 1.0.0-M2
EN 1.0.0-M2
  • Deeplearning4j Suite Overview
  • Release Notes
    • 1.0.0-M2
    • 1.0.0-M1.1
    • 1.0.0-M1
    • 1.0.0-beta7
    • 1.0.0-beta6
    • 1.0.0-beta5
    • 1.0.0-beta4
    • 1.0.0-beta3
    • 1.0.0-beta2
    • 1.0.0-beta
    • 1.0.0-alpha
    • 0.9.1
    • 0.9.0
    • 0.8.0
    • 0.7.2
    • 0.7.1
    • 0.7.0
    • 0.6.0
    • 0.5.0
    • 0.4.0
    • 1.00-M2.2
  • Multi-Project
    • Tutorials
      • Beginners
      • Quickstart
    • How To Guides
      • Import in to your favorite IDE
      • Contribute
        • Eclipse Contributors
      • Developer Docs
        • Github Actions/Build Infra
        • Javacpp
        • Release
        • Testing
      • Build From Source
      • Benchmark
      • Beginners
    • Reference
      • Examples Tour
    • Explanation
      • The core workflow
      • Configuration
        • Backends
          • Performance Issues
          • CPU
          • Cudnn
        • Memory
          • Workspaces
      • Build Tools
      • Snapshots
      • Maven
  • Deeplearning4j
    • Tutorials
      • Quick Start
      • Language Processing
        • Doc2Vec
        • Sentence Iterator
        • Tokenization
        • Vocabulary Cache
    • How To Guides
      • Custom Layers
      • Keras Import
        • Functional Models
        • Sequential Models
        • Custom Layers
        • Keras Import API Overview
          • Advanced Activations
          • Convolutional Layers
          • Core Layers
          • Embedding Layers
          • Local Layers
          • Noise Layers
          • Normalization Layers
          • Pooling Layers
          • Recurrent Layers
          • Wrapper Layers
        • Supported Features Overview
          • Activations
          • Constraints
          • Initializers
          • Losses
          • Optimizers
          • Regularizers
      • Tuning and Training
        • Visualization
        • Troubleshooting Training
        • Early Stopping
        • Evaluation
        • Transfer Learning
    • Reference
      • Model Zoo
        • Zoo Models
      • Activations
      • Auto Encoders
      • Computation Graph
      • Convolutional Layers
      • DataSet Iterators
      • Layers
      • Model Listeners
      • Saving and Loading Models
      • Multi Layer Network
      • Recurrent Layers
      • Updaters/Optimizers
      • Vertices
      • Word2vec/Glove/Doc2Vec
    • Explanation
  • datavec
    • Tutorials
      • Overview
    • How To Guides
    • Reference
      • Analysis
      • Conditions
      • Executors
      • Filters
      • Normalization
      • Operations
      • Transforms
      • Readers
      • Records
      • Reductions
      • Schemas
      • Serialization
      • Visualization
    • Explanation
  • Nd4j
    • Tutorials
      • Quickstart
    • How To Guides
      • Other Framework Interop
        • Tensorflow
        • TVM
        • Onnx
      • Matrix Manipulation
      • Element wise Operations
      • Basics
    • Reference
      • Op Descriptor Format
      • Tensor
      • Syntax
    • Explanation
  • Samediff
    • Tutorials
      • Quickstart
    • How To Guides
      • Importing Tensorflow
      • Adding Operations
        • codegen
    • Reference
      • Operation Namespaces
        • Base Operations
        • Bitwise
        • CNN
        • Image
        • LinAlg
        • Loss
        • Math
        • NN
        • Random
        • RNN
      • Variables
    • Explanation
      • Model Import Framework
  • Libnd4j
    • How To Guides
      • Building on Windows
      • Building for raspberry pi or Jetson Nano
      • Building on ios
      • How to Add Operations
      • How to Setup CLion
    • Reference
      • Understanding graph execution
      • Overview of working with libnd4j
      • Helpers Overview (CUDNN, OneDNN,Armcompute)
    • Explanation
  • Python4j
    • Tutorials
      • Quickstart
    • How To Guides
      • Write Python Script
    • Reference
      • Python Types
      • Python Path
      • Garbage Collection
      • Python Script Execution
    • Explanation
  • Spark
    • Tutorials
      • DL4J on Spark Quickstart
    • How To Guides
      • How To
      • Data How To
    • Reference
      • Parameter Server
      • Technical Reference
    • Explanation
      • Spark API Reference
  • codegen
Powered by GitBook
On this page

Was this helpful?

Export as PDF
  1. Libnd4j
  2. How To Guides

Building for raspberry pi or Jetson Nano

bash pi_build.sh using this helper script one can cross build libnd4j and dl4j with arm COMPUTE LIBRARY . it will download cross compiler and arm compute library.

options

value

description

-a or --arch

arm32

cross compiles for pi/linux 32bit

-a or --arch

arm64

cross compiles for pi/linux 64bit

-a or --arch

android-arm

cross compiles for android 32bit

-a or --arch

android-arm64

cross compiles for android 64bit

-a or --arch

jetson-arm64

cross compiles for jetson nano 64bit

-m or --mvn

if provided will build dl4j using maven

example: bash pi_build.sh --arch android-arm64 --mvn

to change version of the arm COMPUTE LIBRARY modify this line in the script

    ARMCOMPUTE_TAG=v20.05

old one

Please follow following instructions to build nd4j for raspberry PI:

  1. download cross compilation tools for Raspberry PI

     $ apt-get/yum install git cmake
     (You may substitute any path you prefer instead of $HOME/raspberrypi in the following two steps)
     $ mkdir $HOME/raspberrypi
     $ export RPI_HOME=$HOME/raspberrypi
     $ cd $RPI_HOME
     $ git clone git://github.com/raspberrypi/tools.git
     $ export PATH=$PATH:$RPI_HOME/tools/arm-bcm2708/arm-rpi-4.9.3-linux-gnueabihf/bin
  2. download deeplearning4j:

     $ cd $HOME
     $ git clone https://github.com/eclipse/deeplearning4j.git
  3. build libnd4j:

     $ cd deeplearning4j/libnd4j
     $ ./buildnativeoperations.sh -o linux-armhf
  4. build nd4j

     $ export LIBND4J_HOME=<pathTond4JNI>
     $ cd $HOME/deeplearning4j/nd4j
     $ mvn clean install -Djavacpp.platform=linux-armhf -Djavacpp.platform.compiler=$HOME/raspberrypi/tools/arm-bcm2708/arm-rpi-4.9.3-linux-gnueabihf/bin/arm-linux-gnueabihf-g++ -DskipTests  -Dmaven.javadoc.skip=true  -pl '!:nd4j-cuda-9.1,!:nd4j-cuda-9.1-platform,!:nd4j-tests'
PreviousBuilding on WindowsNextBuilding on ios

Last updated 3 years ago

Was this helpful?