All pages
Powered by GitBook
1 of 1

Loading...

Convolutional Layers

Also known as CNN.

Available layers

Convolution1D

[source]

1D convolution layer. Expects input activations of shape [minibatch,channels,sequenceLength]

Convolution2D

2D convolution layer

Convolution3D

3D convolution layer configuration

hasBias

An optional dataFormat: “NDHWC” or “NCDHW”. Defaults to “NCDHW”. The data format of the input and output data. For “NCDHW” (also known as ‘channels first’ format), the data storage order is: [batchSize, inputChannels, inputDepth, inputHeight, inputWidth]. For “NDHWC” (‘channels last’ format), the data is stored in the order of: [batchSize, inputDepth, inputHeight, inputWidth, inputChannels].

kernelSize

The data format for input and output activations. NCDHW: activations (in/out) should have shape [minibatch, channels, depth, height, width] NDHWC: activations (in/out) should have shape [minibatch, depth, height, width, channels]

stride

Set stride size for 3D convolutions in (depth, height, width) order

  • param stride kernel size

  • return 3D convolution layer builder

padding

Set padding size for 3D convolutions in (depth, height, width) order

  • param padding kernel size

  • return 3D convolution layer builder

dilation

Set dilation size for 3D convolutions in (depth, height, width) order

  • param dilation kernel size

  • return 3D convolution layer builder

dataFormat

The data format for input and output activations. NCDHW: activations (in/out) should have shape [minibatch, channels, depth, height, width] NDHWC: activations (in/out) should have shape [minibatch, depth, height, width, channels]

  • param dataFormat Data format to use for activations

setKernelSize

Set kernel size for 3D convolutions in (depth, height, width) order

  • param kernelSize kernel size

setStride

Set stride size for 3D convolutions in (depth, height, width) order

  • param stride kernel size

setPadding

Set padding size for 3D convolutions in (depth, height, width) order

  • param padding kernel size

setDilation

Set dilation size for 3D convolutions in (depth, height, width) order

  • param dilation kernel size

Deconvolution2D

2D deconvolution layer configuration

Deconvolutions are also known as transpose convolutions or fractionally strided convolutions. In essence, deconvolutions swap forward and backward pass with regular 2D convolutions.

See the paper by Matt Zeiler for details:

For an intuitive guide to convolution arithmetic and shapes, see:

hasBias

Deconvolution2D layer nIn in the input layer is the number of channels nOut is the number of filters to be used in the net or in other words the channels The builder specifies the filter/kernel size, the stride and padding The pooling layer takes the kernel size

convolutionMode

Set the convolution mode for the Convolution layer. See {- link ConvolutionMode} for more details

  • param convolutionMode Convolution mode for layer

kernelSize

Size of the convolution rows/columns

  • param kernelSize the height and width of the kernel

Cropping1D

Cropping layer for convolutional (1d) neural networks. Allows cropping to be done separately for top/bottom

getOutputType

  • param cropTopBottom Amount of cropping to apply to both the top and the bottom of the input activations

setCropping

Cropping amount for top/bottom (in that order). Must be length 1 or 2 array.

build

  • param cropping Cropping amount for top/bottom (in that order). Must be length 1 or 2 array.

Cropping2D

Cropping layer for convolutional (2d) neural networks. Allows cropping to be done separately for top/bottom/left/right

getOutputType

  • param cropTopBottom Amount of cropping to apply to both the top and the bottom of the input activations

  • param cropLeftRight Amount of cropping to apply to both the left and the right of the input activations

setCropping

Cropping amount for top/bottom/left/right (in that order). A length 4 array.

build

  • param cropping Cropping amount for top/bottom/left/right (in that order). Must be length 4 array.

Cropping3D

Cropping layer for convolutional (3d) neural networks. Allows cropping to be done separately for upper and lower bounds of depth, height and width dimensions.

getOutputType

  • param cropDepth Amount of cropping to apply to both depth boundaries of the input activations

  • param cropHeight Amount of cropping to apply to both height boundaries of the input activations

  • param cropWidth Amount of cropping to apply to both width boundaries of the input activations

setCropping

Cropping amount, a length 6 array, i.e. crop left depth, crop right depth, crop left height, crop right height, crop left width, crop right width

build

  • param cropping Cropping amount, must be length 3 or 6 array, i.e. either crop depth, crop height, crop width or crop left depth, crop right depth, crop left height, crop right height, crop left width, crop right width

[source]
[source]
[source]
http://www.matthewzeiler.com/wp-content/uploads/2017/07/cvpr2010.pdf
https://arxiv.org/abs/1603.07285v1
[source]
[source]
[source]
public boolean hasBias()
public Builder kernelSize(int... kernelSize)
public Builder stride(int... stride)
public Builder padding(int... padding)
public Builder dilation(int... dilation)
public Builder dataFormat(DataFormat dataFormat)
public void setKernelSize(int... kernelSize)
public void setStride(int... stride)
public void setPadding(int... padding)
public void setDilation(int... dilation)
public boolean hasBias()
public Builder convolutionMode(ConvolutionMode convolutionMode)
public Builder kernelSize(int... kernelSize)
public InputType getOutputType(int layerIndex, InputType inputType)
public void setCropping(int... cropping)
public Cropping1D build()
public InputType getOutputType(int layerIndex, InputType inputType)
public void setCropping(int... cropping)
public Cropping2D build()
public InputType getOutputType(int layerIndex, InputType inputType)
public void setCropping(int... cropping)
public Cropping3D build()