Deeplearning4j
Community ForumND4J JavadocDL4J Javadoc
EN 1.0.0-M2
EN 1.0.0-M2
  • Deeplearning4j Suite Overview
  • Release Notes
    • 1.0.0-M2
    • 1.0.0-M1.1
    • 1.0.0-M1
    • 1.0.0-beta7
    • 1.0.0-beta6
    • 1.0.0-beta5
    • 1.0.0-beta4
    • 1.0.0-beta3
    • 1.0.0-beta2
    • 1.0.0-beta
    • 1.0.0-alpha
    • 0.9.1
    • 0.9.0
    • 0.8.0
    • 0.7.2
    • 0.7.1
    • 0.7.0
    • 0.6.0
    • 0.5.0
    • 0.4.0
    • 1.00-M2.2
  • Multi-Project
    • Tutorials
      • Beginners
      • Quickstart
    • How To Guides
      • Import in to your favorite IDE
      • Contribute
        • Eclipse Contributors
      • Developer Docs
        • Github Actions/Build Infra
        • Javacpp
        • Release
        • Testing
      • Build From Source
      • Benchmark
      • Beginners
    • Reference
      • Examples Tour
    • Explanation
      • The core workflow
      • Configuration
        • Backends
          • Performance Issues
          • CPU
          • Cudnn
        • Memory
          • Workspaces
      • Build Tools
      • Snapshots
      • Maven
  • Deeplearning4j
    • Tutorials
      • Quick Start
      • Language Processing
        • Doc2Vec
        • Sentence Iterator
        • Tokenization
        • Vocabulary Cache
    • How To Guides
      • Custom Layers
      • Keras Import
        • Functional Models
        • Sequential Models
        • Custom Layers
        • Keras Import API Overview
          • Advanced Activations
          • Convolutional Layers
          • Core Layers
          • Embedding Layers
          • Local Layers
          • Noise Layers
          • Normalization Layers
          • Pooling Layers
          • Recurrent Layers
          • Wrapper Layers
        • Supported Features Overview
          • Activations
          • Constraints
          • Initializers
          • Losses
          • Optimizers
          • Regularizers
      • Tuning and Training
        • Visualization
        • Troubleshooting Training
        • Early Stopping
        • Evaluation
        • Transfer Learning
    • Reference
      • Model Zoo
        • Zoo Models
      • Activations
      • Auto Encoders
      • Computation Graph
      • Convolutional Layers
      • DataSet Iterators
      • Layers
      • Model Listeners
      • Saving and Loading Models
      • Multi Layer Network
      • Recurrent Layers
      • Updaters/Optimizers
      • Vertices
      • Word2vec/Glove/Doc2Vec
    • Explanation
  • datavec
    • Tutorials
      • Overview
    • How To Guides
    • Reference
      • Analysis
      • Conditions
      • Executors
      • Filters
      • Normalization
      • Operations
      • Transforms
      • Readers
      • Records
      • Reductions
      • Schemas
      • Serialization
      • Visualization
    • Explanation
  • Nd4j
    • Tutorials
      • Quickstart
    • How To Guides
      • Other Framework Interop
        • Tensorflow
        • TVM
        • Onnx
      • Matrix Manipulation
      • Element wise Operations
      • Basics
    • Reference
      • Op Descriptor Format
      • Tensor
      • Syntax
    • Explanation
  • Samediff
    • Tutorials
      • Quickstart
    • How To Guides
      • Importing Tensorflow
      • Adding Operations
        • codegen
    • Reference
      • Operation Namespaces
        • Base Operations
        • Bitwise
        • CNN
        • Image
        • LinAlg
        • Loss
        • Math
        • NN
        • Random
        • RNN
      • Variables
    • Explanation
      • Model Import Framework
  • Libnd4j
    • How To Guides
      • Building on Windows
      • Building for raspberry pi or Jetson Nano
      • Building on ios
      • How to Add Operations
      • How to Setup CLion
    • Reference
      • Understanding graph execution
      • Overview of working with libnd4j
      • Helpers Overview (CUDNN, OneDNN,Armcompute)
    • Explanation
  • Python4j
    • Tutorials
      • Quickstart
    • How To Guides
      • Write Python Script
    • Reference
      • Python Types
      • Python Path
      • Garbage Collection
      • Python Script Execution
    • Explanation
  • Spark
    • Tutorials
      • DL4J on Spark Quickstart
    • How To Guides
      • How To
      • Data How To
    • Reference
      • Parameter Server
      • Technical Reference
    • Explanation
      • Spark API Reference
  • codegen
Powered by GitBook
On this page
  • and
  • bitRotl
  • bitRotr
  • bitShift
  • bitShiftRight
  • bitsHammingDistance
  • leftShift
  • leftShiftCyclic
  • or
  • rightShift
  • rightShiftCyclic
  • xor

Was this helpful?

Export as PDF
  1. Samediff
  2. Reference
  3. Operation Namespaces

Bitwise

and

INDArray and(INDArray x, INDArray y)

SDVariable and(SDVariable x, SDVariable y)
SDVariable and(String name, SDVariable x, SDVariable y)

Bitwise AND operation. Supports broadcasting.

  • x (INT) - First input array

  • y (INT) - Second input array

bitRotl

INDArray bitRotl(INDArray x, INDArray shift)

SDVariable bitRotl(SDVariable x, SDVariable shift)
SDVariable bitRotl(String name, SDVariable x, SDVariable shift)

Roll integer bits to the left, i.e. var << 4 | var >> (32 - 4)

  • x (INT) - Input 1

  • shift (INT) - Number of bits to shift.

bitRotr

INDArray bitRotr(INDArray x, INDArray shift)

SDVariable bitRotr(SDVariable x, SDVariable shift)
SDVariable bitRotr(String name, SDVariable x, SDVariable shift)

Roll integer bits to the right, i.e. var >> 4 | var << (32 - 4)

  • x (INT) - Input 1

  • shift (INT) - Number of bits to shift.

bitShift

INDArray bitShift(INDArray x, INDArray shift)

SDVariable bitShift(SDVariable x, SDVariable shift)
SDVariable bitShift(String name, SDVariable x, SDVariable shift)

Shift integer bits to the left, i.e. var << 4

  • x (INT) - Input 1

  • shift (INT) - Number of bits to shift.

bitShiftRight

INDArray bitShiftRight(INDArray x, INDArray shift)

SDVariable bitShiftRight(SDVariable x, SDVariable shift)
SDVariable bitShiftRight(String name, SDVariable x, SDVariable shift)

Shift integer bits to the right, i.e. var >> 4

  • x (INT) - Input 1

  • shift (INT) - Number of bits to shift.

bitsHammingDistance

INDArray bitsHammingDistance(INDArray x, INDArray y)

SDVariable bitsHammingDistance(SDVariable x, SDVariable y)
SDVariable bitsHammingDistance(String name, SDVariable x, SDVariable y)

Bitwise Hamming distance reduction over all elements of both input arrays. For example, if x=01100000 and y=1010000 then the bitwise Hamming distance is 2 (due to differences at positions 0 and 1)

  • x (INT) - First input array.

  • y (INT) - Second input array.

leftShift

INDArray leftShift(INDArray x, INDArray y)

SDVariable leftShift(SDVariable x, SDVariable y)
SDVariable leftShift(String name, SDVariable x, SDVariable y)

Bitwise left shift operation. Supports broadcasting.

  • x (INT) - Input to be bit shifted

  • y (INT) - Amount to shift elements of x array

leftShiftCyclic

INDArray leftShiftCyclic(INDArray x, INDArray y)

SDVariable leftShiftCyclic(SDVariable x, SDVariable y)
SDVariable leftShiftCyclic(String name, SDVariable x, SDVariable y)

Bitwise left cyclical shift operation. Supports broadcasting.

Unlike #leftShift(INDArray, INDArray) the bits will "wrap around":

leftShiftCyclic(01110000, 2) -> 11000001

  • x (INT) - Input to be bit shifted

  • y (INT) - Amount to shift elements of x array

or

INDArray or(INDArray x, INDArray y)

SDVariable or(SDVariable x, SDVariable y)
SDVariable or(String name, SDVariable x, SDVariable y)

Bitwise OR operation. Supports broadcasting.

  • x (INT) - First input array

  • y (INT) - First input array

rightShift

INDArray rightShift(INDArray x, INDArray y)

SDVariable rightShift(SDVariable x, SDVariable y)
SDVariable rightShift(String name, SDVariable x, SDVariable y)

Bitwise right shift operation. Supports broadcasting.

  • x (INT) - Input to be bit shifted

  • y (INT) - Amount to shift elements of x array

rightShiftCyclic

INDArray rightShiftCyclic(INDArray x, INDArray y)

SDVariable rightShiftCyclic(SDVariable x, SDVariable y)
SDVariable rightShiftCyclic(String name, SDVariable x, SDVariable y)

Bitwise right cyclical shift operation. Supports broadcasting.

Unlike rightShift(INDArray, INDArray) the bits will "wrap around":

rightShiftCyclic(00001110, 2) -> 10000011

  • x (INT) - Input to be bit shifted

  • y (INT) - Amount to shift elements of x array

xor

INDArray xor(INDArray x, INDArray y)

SDVariable xor(SDVariable x, SDVariable y)
SDVariable xor(String name, SDVariable x, SDVariable y)

Bitwise XOR operation (exclusive OR). Supports broadcasting.

  • x (INT) - First input array

  • y (INT) - First input array

PreviousBase OperationsNextCNN

Last updated 3 years ago

Was this helpful?