Deeplearning4j
Community ForumND4J JavadocDL4J Javadoc
EN 1.0.0-M2
EN 1.0.0-M2
  • Deeplearning4j Suite Overview
  • Release Notes
    • 1.0.0-M2
    • 1.0.0-M1.1
    • 1.0.0-M1
    • 1.0.0-beta7
    • 1.0.0-beta6
    • 1.0.0-beta5
    • 1.0.0-beta4
    • 1.0.0-beta3
    • 1.0.0-beta2
    • 1.0.0-beta
    • 1.0.0-alpha
    • 0.9.1
    • 0.9.0
    • 0.8.0
    • 0.7.2
    • 0.7.1
    • 0.7.0
    • 0.6.0
    • 0.5.0
    • 0.4.0
    • 1.00-M2.2
  • Multi-Project
    • Tutorials
      • Beginners
      • Quickstart
    • How To Guides
      • Import in to your favorite IDE
      • Contribute
        • Eclipse Contributors
      • Developer Docs
        • Github Actions/Build Infra
        • Javacpp
        • Release
        • Testing
      • Build From Source
      • Benchmark
      • Beginners
    • Reference
      • Examples Tour
    • Explanation
      • The core workflow
      • Configuration
        • Backends
          • Performance Issues
          • CPU
          • Cudnn
        • Memory
          • Workspaces
      • Build Tools
      • Snapshots
      • Maven
  • Deeplearning4j
    • Tutorials
      • Quick Start
      • Language Processing
        • Doc2Vec
        • Sentence Iterator
        • Tokenization
        • Vocabulary Cache
    • How To Guides
      • Custom Layers
      • Keras Import
        • Functional Models
        • Sequential Models
        • Custom Layers
        • Keras Import API Overview
          • Advanced Activations
          • Convolutional Layers
          • Core Layers
          • Embedding Layers
          • Local Layers
          • Noise Layers
          • Normalization Layers
          • Pooling Layers
          • Recurrent Layers
          • Wrapper Layers
        • Supported Features Overview
          • Activations
          • Constraints
          • Initializers
          • Losses
          • Optimizers
          • Regularizers
      • Tuning and Training
        • Visualization
        • Troubleshooting Training
        • Early Stopping
        • Evaluation
        • Transfer Learning
    • Reference
      • Model Zoo
        • Zoo Models
      • Activations
      • Auto Encoders
      • Computation Graph
      • Convolutional Layers
      • DataSet Iterators
      • Layers
      • Model Listeners
      • Saving and Loading Models
      • Multi Layer Network
      • Recurrent Layers
      • Updaters/Optimizers
      • Vertices
      • Word2vec/Glove/Doc2Vec
    • Explanation
  • datavec
    • Tutorials
      • Overview
    • How To Guides
    • Reference
      • Analysis
      • Conditions
      • Executors
      • Filters
      • Normalization
      • Operations
      • Transforms
      • Readers
      • Records
      • Reductions
      • Schemas
      • Serialization
      • Visualization
    • Explanation
  • Nd4j
    • Tutorials
      • Quickstart
    • How To Guides
      • Other Framework Interop
        • Tensorflow
        • TVM
        • Onnx
      • Matrix Manipulation
      • Element wise Operations
      • Basics
    • Reference
      • Op Descriptor Format
      • Tensor
      • Syntax
    • Explanation
  • Samediff
    • Tutorials
      • Quickstart
    • How To Guides
      • Importing Tensorflow
      • Adding Operations
        • codegen
    • Reference
      • Operation Namespaces
        • Base Operations
        • Bitwise
        • CNN
        • Image
        • LinAlg
        • Loss
        • Math
        • NN
        • Random
        • RNN
      • Variables
    • Explanation
      • Model Import Framework
  • Libnd4j
    • How To Guides
      • Building on Windows
      • Building for raspberry pi or Jetson Nano
      • Building on ios
      • How to Add Operations
      • How to Setup CLion
    • Reference
      • Understanding graph execution
      • Overview of working with libnd4j
      • Helpers Overview (CUDNN, OneDNN,Armcompute)
    • Explanation
  • Python4j
    • Tutorials
      • Quickstart
    • How To Guides
      • Write Python Script
    • Reference
      • Python Types
      • Python Path
      • Garbage Collection
      • Python Script Execution
    • Explanation
  • Spark
    • Tutorials
      • DL4J on Spark Quickstart
    • How To Guides
      • How To
      • Data How To
    • Reference
      • Parameter Server
      • Technical Reference
    • Explanation
      • Spark API Reference
  • codegen
Powered by GitBook
On this page
  • bernoulli
  • binomial
  • exponential
  • logNormal
  • normal
  • normalTruncated
  • uniform

Was this helpful?

Export as PDF
  1. Samediff
  2. Reference
  3. Operation Namespaces

Random

bernoulli

INDArray bernoulli(double p, DataType datatype, long[] shape)

SDVariable bernoulli(double p, DataType datatype, long[] shape)
SDVariable bernoulli(String name, double p, DataType datatype, long[] shape)

Generate a new random INDArray, where values are randomly sampled according to a Bernoulli distribution,

with the specified probability. Array values will have value 1 with probability P and value 0 with probability

1-P.

  • p - Probability of value 1

  • datatype - Data type of the output variable

  • shape - Shape of the new random INDArray, as a 1D array (Size: AtLeast(min=0))

binomial

INDArray binomial(int nTrials, double p, DataType datatype, long[] shape)

SDVariable binomial(int nTrials, double p, DataType datatype, long[] shape)
SDVariable binomial(String name, int nTrials, double p, DataType datatype, long[] shape)

Generate a new random INDArray, where values are randomly sampled according to a Binomial distribution,

with the specified number of trials and probability.

  • nTrials - Number of trials parameter for the binomial distribution

  • p - Probability of success for each trial

  • datatype - Data type of the output variable

  • shape - Shape of the new random INDArray, as a 1D array (Size: AtLeast(min=0))

exponential

INDArray exponential(double lambda, DataType datatype, long[] shape)

SDVariable exponential(double lambda, DataType datatype, long[] shape)
SDVariable exponential(String name, double lambda, DataType datatype, long[] shape)

Generate a new random INDArray, where values are randomly sampled according to a exponential distribution:

P(x) = lambda exp(-lambda x)

  • lambda - lambda parameter

  • datatype - Data type of the output variable

  • shape - Shape of the new random INDArray, as a 1D array (Size: AtLeast(min=0))

logNormal

INDArray logNormal(double mean, double stddev, DataType datatype, long[] shape)

SDVariable logNormal(double mean, double stddev, DataType datatype, long[] shape)
SDVariable logNormal(String name, double mean, double stddev, DataType datatype, long[] shape)

Generate a new random INDArray, where values are randomly sampled according to a Log Normal distribution,

i.e., log(x) ~ N(mean, stdev)

  • mean - Mean value for the random array

  • stddev - Standard deviation for the random array

  • datatype - Data type of the output variable

  • shape - Shape of the new random INDArray, as a 1D array (Size: AtLeast(min=0))

normal

INDArray normal(double mean, double stddev, DataType datatype, long[] shape)

SDVariable normal(double mean, double stddev, DataType datatype, long[] shape)
SDVariable normal(String name, double mean, double stddev, DataType datatype, long[] shape)

Generate a new random INDArray, where values are randomly sampled according to a Gaussian (normal) distribution,

N(mean, stdev)

  • mean - Mean value for the random array

  • stddev - Standard deviation for the random array

  • datatype - Data type of the output variable

  • shape - Shape of the new random INDArray, as a 1D array (Size: AtLeast(min=0))

normalTruncated

INDArray normalTruncated(double mean, double stddev, DataType datatype, long[] shape)

SDVariable normalTruncated(double mean, double stddev, DataType datatype, long[] shape)
SDVariable normalTruncated(String name, double mean, double stddev, DataType datatype, long[] shape)

Generate a new random INDArray, where values are randomly sampled according to a Gaussian (normal) distribution,

N(mean, stdev). However, any values more than 1 standard deviation from the mean are dropped and re-sampled

  • mean - Mean value for the random array

  • stddev - Standard deviation for the random array

  • datatype - Data type of the output variable

  • shape - Shape of the new random INDArray, as a 1D array (Size: AtLeast(min=0))

uniform

INDArray uniform(double min, double max, DataType datatype, long[] shape)

SDVariable uniform(double min, double max, DataType datatype, long[] shape)
SDVariable uniform(String name, double min, double max, DataType datatype, long[] shape)

Generate a new random INDArray, where values are randomly sampled according to a uniform distribution,

U(min,max)

  • min - Minimum value

  • max - Maximum value.

  • datatype - Data type of the output variable

  • shape - Shape of the new random INDArray, as a 1D array (Size: AtLeast(min=0))

PreviousNNNextRNN

Last updated 3 years ago

Was this helpful?