Deeplearning4j
Community ForumND4J JavadocDL4J Javadoc
EN 1.0.0-M2
EN 1.0.0-M2
  • Deeplearning4j Suite Overview
  • Release Notes
    • 1.0.0-M2
    • 1.0.0-M1.1
    • 1.0.0-M1
    • 1.0.0-beta7
    • 1.0.0-beta6
    • 1.0.0-beta5
    • 1.0.0-beta4
    • 1.0.0-beta3
    • 1.0.0-beta2
    • 1.0.0-beta
    • 1.0.0-alpha
    • 0.9.1
    • 0.9.0
    • 0.8.0
    • 0.7.2
    • 0.7.1
    • 0.7.0
    • 0.6.0
    • 0.5.0
    • 0.4.0
    • 1.00-M2.2
  • Multi-Project
    • Tutorials
      • Beginners
      • Quickstart
    • How To Guides
      • Import in to your favorite IDE
      • Contribute
        • Eclipse Contributors
      • Developer Docs
        • Github Actions/Build Infra
        • Javacpp
        • Release
        • Testing
      • Build From Source
      • Benchmark
      • Beginners
    • Reference
      • Examples Tour
    • Explanation
      • The core workflow
      • Configuration
        • Backends
          • Performance Issues
          • CPU
          • Cudnn
        • Memory
          • Workspaces
      • Build Tools
      • Snapshots
      • Maven
  • Deeplearning4j
    • Tutorials
      • Quick Start
      • Language Processing
        • Doc2Vec
        • Sentence Iterator
        • Tokenization
        • Vocabulary Cache
    • How To Guides
      • Custom Layers
      • Keras Import
        • Functional Models
        • Sequential Models
        • Custom Layers
        • Keras Import API Overview
          • Advanced Activations
          • Convolutional Layers
          • Core Layers
          • Embedding Layers
          • Local Layers
          • Noise Layers
          • Normalization Layers
          • Pooling Layers
          • Recurrent Layers
          • Wrapper Layers
        • Supported Features Overview
          • Activations
          • Constraints
          • Initializers
          • Losses
          • Optimizers
          • Regularizers
      • Tuning and Training
        • Visualization
        • Troubleshooting Training
        • Early Stopping
        • Evaluation
        • Transfer Learning
    • Reference
      • Model Zoo
        • Zoo Models
      • Activations
      • Auto Encoders
      • Computation Graph
      • Convolutional Layers
      • DataSet Iterators
      • Layers
      • Model Listeners
      • Saving and Loading Models
      • Multi Layer Network
      • Recurrent Layers
      • Updaters/Optimizers
      • Vertices
      • Word2vec/Glove/Doc2Vec
    • Explanation
  • datavec
    • Tutorials
      • Overview
    • How To Guides
    • Reference
      • Analysis
      • Conditions
      • Executors
      • Filters
      • Normalization
      • Operations
      • Transforms
      • Readers
      • Records
      • Reductions
      • Schemas
      • Serialization
      • Visualization
    • Explanation
  • Nd4j
    • Tutorials
      • Quickstart
    • How To Guides
      • Other Framework Interop
        • Tensorflow
        • TVM
        • Onnx
      • Matrix Manipulation
      • Element wise Operations
      • Basics
    • Reference
      • Op Descriptor Format
      • Tensor
      • Syntax
    • Explanation
  • Samediff
    • Tutorials
      • Quickstart
    • How To Guides
      • Importing Tensorflow
      • Adding Operations
        • codegen
    • Reference
      • Operation Namespaces
        • Base Operations
        • Bitwise
        • CNN
        • Image
        • LinAlg
        • Loss
        • Math
        • NN
        • Random
        • RNN
      • Variables
    • Explanation
      • Model Import Framework
  • Libnd4j
    • How To Guides
      • Building on Windows
      • Building for raspberry pi or Jetson Nano
      • Building on ios
      • How to Add Operations
      • How to Setup CLion
    • Reference
      • Understanding graph execution
      • Overview of working with libnd4j
      • Helpers Overview (CUDNN, OneDNN,Armcompute)
    • Explanation
  • Python4j
    • Tutorials
      • Quickstart
    • How To Guides
      • Write Python Script
    • Reference
      • Python Types
      • Python Path
      • Garbage Collection
      • Python Script Execution
    • Explanation
  • Spark
    • Tutorials
      • DL4J on Spark Quickstart
    • How To Guides
      • How To
      • Data How To
    • Reference
      • Parameter Server
      • Technical Reference
    • Explanation
      • Spark API Reference
  • codegen
Powered by GitBook
On this page
  • RNG Seed
  • ModelSerializer

Was this helpful?

Export as PDF
  1. Deeplearning4j
  2. Reference

Saving and Loading Models

Saving and loading of neural networks.

PreviousModel ListenersNextMulti Layer Network

Last updated 3 years ago

Was this helpful?

MultiLayerNetwork and ComputationGraph both have save and load methods.

You can save/load a MultiLayerNetwork using:

MultiLayerNetwork net = ...
net.save(new File("...");

MultiLayerNetwork net2 = MultiLayerNetwork.load(new File("..."), true);

Similarly, you can save/load a ComputationGraph using:

ComputationGraph net = ...
net.save(new File("..."));

ComputationGraph net2 = ComputationGraph.load(new File("..."), true);

Internally, these methods use the ModelSerializer class, which handles loading and saving models. There are two methods for saving models shown in the examples through the link. The first example saves a normal multi layer network, the second one saves a .

Here is a with code to save a computation graph using the ModelSerializer class, as well as an example of using ModelSerializer to save a neural net built using MultiLayer configuration.

RNG Seed

If your model uses probabilities (i.e. DropOut/DropConnect), it may make sense to save it separately, and apply it after model is restored; i.e:

 Nd4j.getRandom().setSeed(12345);
 ModelSerializer.restoreMultiLayerNetwork(modelFile);

This will guarantee equal results between sessions/JVMs.

ModelSerializer

Utility class suited to save/restore neural net models

writeModel

public static void writeModel(@NonNull Model model, @NonNull File file, boolean saveUpdater) throws IOException

Write a model to a file

  • param model the model to write

  • param file the file to write to

  • param saveUpdater whether to save the updater or not

  • throws IOException

writeModel

public static void writeModel(@NonNull Model model, @NonNull File file, boolean saveUpdater,DataNormalization dataNormalization) throws IOException

Write a model to a file

  • param model the model to write

  • param file the file to write to

  • param saveUpdater whether to save the updater or not

  • param dataNormalization the normalizer to save (optional)

  • throws IOException

writeModel

public static void writeModel(@NonNull Model model, @NonNull String path, boolean saveUpdater) throws IOException

Write a model to a file path

  • param model the model to write

  • param path the path to write to

  • param saveUpdater whether to save the updater or not

  • throws IOException

writeModel

public static void writeModel(@NonNull Model model, @NonNull OutputStream stream, boolean saveUpdater)
            throws IOException

Write a model to an output stream

  • param model the model to save

  • param stream the output stream to write to

  • param saveUpdater whether to save the updater for the model or not

  • throws IOException

writeModel

public static void writeModel(@NonNull Model model, @NonNull OutputStream stream, boolean saveUpdater,DataNormalization dataNormalization)
            throws IOException

Write a model to an output stream

  • param model the model to save

  • param stream the output stream to write to

  • param saveUpdater whether to save the updater for the model or not

  • param dataNormalization the normalizer ot save (may be null)

  • throws IOException

restoreMultiLayerNetwork

public static MultiLayerNetwork restoreMultiLayerNetwork(@NonNull File file) throws IOException

Load a multi layer network from a file

  • param file the file to load from

  • return the loaded multi layer network

  • throws IOException

restoreMultiLayerNetwork

public static MultiLayerNetwork restoreMultiLayerNetwork(@NonNull File file, boolean loadUpdater)
            throws IOException

Load a multi layer network from a file

  • param file the file to load from

  • return the loaded multi layer network

  • throws IOException

restoreMultiLayerNetwork

public static MultiLayerNetwork restoreMultiLayerNetwork(@NonNull InputStream is, boolean loadUpdater)
            throws IOException

Load a MultiLayerNetwork from InputStream from an input stream Note: the input stream is read fully and closed by this method. Consequently, the input stream cannot be re-used.

  • param is the inputstream to load from

  • return the loaded multi layer network

  • throws IOException

  • see #restoreMultiLayerNetworkAndNormalizer(InputStream, boolean)

restoreMultiLayerNetwork

public static MultiLayerNetwork restoreMultiLayerNetwork(@NonNull InputStream is) throws IOException

Restore a multi layer network from an input stream Note: the input stream is read fully and closed by this method. Consequently, the input stream cannot be re-used.

  • param is the input stream to restore from

  • return the loaded multi layer network

  • throws IOException

  • see #restoreMultiLayerNetworkAndNormalizer(InputStream, boolean)

restoreMultiLayerNetwork

public static MultiLayerNetwork restoreMultiLayerNetwork(@NonNull String path) throws IOException

Load a MultilayerNetwork model from a file

  • param path path to the model file, to get the computation graph from

  • return the loaded computation graph

  • throws IOException

restoreMultiLayerNetwork

public static MultiLayerNetwork restoreMultiLayerNetwork(@NonNull String path, boolean loadUpdater)
            throws IOException

Load a MultilayerNetwork model from a file

  • param path path to the model file, to get the computation graph from

  • return the loaded computation graph

  • throws IOException

restoreComputationGraph

public static ComputationGraph restoreComputationGraph(@NonNull String path) throws IOException

Restore a MultiLayerNetwork and Normalizer (if present - null if not) from the InputStream. Note: the input stream is read fully and closed by this method. Consequently, the input stream cannot be re-used.

  • param is Input stream to read from

  • param loadUpdater Whether to load the updater from the model or not

  • return Model and normalizer, if present

  • throws IOException If an error occurs when reading from the stream

restoreComputationGraph

public static ComputationGraph restoreComputationGraph(@NonNull String path, boolean loadUpdater)
            throws IOException

Load a computation graph from a file

  • param path path to the model file, to get the computation graph from

  • return the loaded computation graph

  • throws IOException

restoreComputationGraph

public static ComputationGraph restoreComputationGraph(@NonNull InputStream is, boolean loadUpdater)
            throws IOException

Load a computation graph from a InputStream

  • param is the inputstream to get the computation graph from

  • return the loaded computation graph

  • throws IOException

restoreComputationGraph

public static ComputationGraph restoreComputationGraph(@NonNull InputStream is) throws IOException

Load a computation graph from a InputStream

  • param is the inputstream to get the computation graph from

  • return the loaded computation graph

  • throws IOException

restoreComputationGraph

public static ComputationGraph restoreComputationGraph(@NonNull File file) throws IOException

Load a computation graph from a file

  • param file the file to get the computation graph from

  • return the loaded computation graph

  • throws IOException

restoreComputationGraph

public static ComputationGraph restoreComputationGraph(@NonNull File file, boolean loadUpdater) throws IOException

Restore a ComputationGraph and Normalizer (if present - null if not) from the InputStream. Note: the input stream is read fully and closed by this method. Consequently, the input stream cannot be re-used.

  • param is Input stream to read from

  • param loadUpdater Whether to load the updater from the model or not

  • return Model and normalizer, if present

  • throws IOException If an error occurs when reading from the stream

taskByModel

public static Task taskByModel(Model model)
  • param model

  • return

addNormalizerToModel

public static void addNormalizerToModel(File f, Normalizer<?> normalizer)

This method appends normalizer to a given persisted model.

PLEASE NOTE: File should be model file saved earlier with ModelSerializer

  • param f

  • param normalizer

addObjectToFile

public static void addObjectToFile(@NonNull File f, @NonNull String key, @NonNull Object o)

Add an object to the (already existing) model file using Java Object Serialization. Objects can be restored using {- link #getObjectFromFile(File, String)}

  • param f File to add the object to

  • param key Key to store the object under

  • param o Object to store using Java object serialization

computation graph
basic example
[source]