Deeplearning4j
Community ForumND4J JavadocDL4J Javadoc
EN 1.0.0-M2
EN 1.0.0-M2
  • Deeplearning4j Suite Overview
  • Release Notes
    • 1.0.0-M2
    • 1.0.0-M1.1
    • 1.0.0-M1
    • 1.0.0-beta7
    • 1.0.0-beta6
    • 1.0.0-beta5
    • 1.0.0-beta4
    • 1.0.0-beta3
    • 1.0.0-beta2
    • 1.0.0-beta
    • 1.0.0-alpha
    • 0.9.1
    • 0.9.0
    • 0.8.0
    • 0.7.2
    • 0.7.1
    • 0.7.0
    • 0.6.0
    • 0.5.0
    • 0.4.0
    • 1.00-M2.2
  • Multi-Project
    • Tutorials
      • Beginners
      • Quickstart
    • How To Guides
      • Import in to your favorite IDE
      • Contribute
        • Eclipse Contributors
      • Developer Docs
        • Github Actions/Build Infra
        • Javacpp
        • Release
        • Testing
      • Build From Source
      • Benchmark
      • Beginners
    • Reference
      • Examples Tour
    • Explanation
      • The core workflow
      • Configuration
        • Backends
          • Performance Issues
          • CPU
          • Cudnn
        • Memory
          • Workspaces
      • Build Tools
      • Snapshots
      • Maven
  • Deeplearning4j
    • Tutorials
      • Quick Start
      • Language Processing
        • Doc2Vec
        • Sentence Iterator
        • Tokenization
        • Vocabulary Cache
    • How To Guides
      • Custom Layers
      • Keras Import
        • Functional Models
        • Sequential Models
        • Custom Layers
        • Keras Import API Overview
          • Advanced Activations
          • Convolutional Layers
          • Core Layers
          • Embedding Layers
          • Local Layers
          • Noise Layers
          • Normalization Layers
          • Pooling Layers
          • Recurrent Layers
          • Wrapper Layers
        • Supported Features Overview
          • Activations
          • Constraints
          • Initializers
          • Losses
          • Optimizers
          • Regularizers
      • Tuning and Training
        • Visualization
        • Troubleshooting Training
        • Early Stopping
        • Evaluation
        • Transfer Learning
    • Reference
      • Model Zoo
        • Zoo Models
      • Activations
      • Auto Encoders
      • Computation Graph
      • Convolutional Layers
      • DataSet Iterators
      • Layers
      • Model Listeners
      • Saving and Loading Models
      • Multi Layer Network
      • Recurrent Layers
      • Updaters/Optimizers
      • Vertices
      • Word2vec/Glove/Doc2Vec
    • Explanation
  • datavec
    • Tutorials
      • Overview
    • How To Guides
    • Reference
      • Analysis
      • Conditions
      • Executors
      • Filters
      • Normalization
      • Operations
      • Transforms
      • Readers
      • Records
      • Reductions
      • Schemas
      • Serialization
      • Visualization
    • Explanation
  • Nd4j
    • Tutorials
      • Quickstart
    • How To Guides
      • Other Framework Interop
        • Tensorflow
        • TVM
        • Onnx
      • Matrix Manipulation
      • Element wise Operations
      • Basics
    • Reference
      • Op Descriptor Format
      • Tensor
      • Syntax
    • Explanation
  • Samediff
    • Tutorials
      • Quickstart
    • How To Guides
      • Importing Tensorflow
      • Adding Operations
        • codegen
    • Reference
      • Operation Namespaces
        • Base Operations
        • Bitwise
        • CNN
        • Image
        • LinAlg
        • Loss
        • Math
        • NN
        • Random
        • RNN
      • Variables
    • Explanation
      • Model Import Framework
  • Libnd4j
    • How To Guides
      • Building on Windows
      • Building for raspberry pi or Jetson Nano
      • Building on ios
      • How to Add Operations
      • How to Setup CLion
    • Reference
      • Understanding graph execution
      • Overview of working with libnd4j
      • Helpers Overview (CUDNN, OneDNN,Armcompute)
    • Explanation
  • Python4j
    • Tutorials
      • Quickstart
    • How To Guides
      • Write Python Script
    • Reference
      • Python Types
      • Python Path
      • Garbage Collection
      • Python Script Execution
    • Explanation
  • Spark
    • Tutorials
      • DL4J on Spark Quickstart
    • How To Guides
      • How To
      • Data How To
    • Reference
      • Parameter Server
      • Technical Reference
    • Explanation
      • Spark API Reference
  • codegen
Powered by GitBook
On this page
  • Cholesky
  • Lstsq
  • Lu
  • Matmul
  • MatrixBandPart
  • Qr
  • Solve
  • TriangularSolve
  • cross
  • diag
  • diag_part
  • logdet
  • mmul
  • svd
  • tri
  • triu

Was this helpful?

Export as PDF
  1. Samediff
  2. Reference
  3. Operation Namespaces

LinAlg

Cholesky

INDArray Cholesky(INDArray input)

SDVariable Cholesky(SDVariable input)
SDVariable Cholesky(String name, SDVariable input)

Computes the Cholesky decomposition of one or more square matrices.

  • input (NUMERIC) - Input tensor with inner-most 2 dimensions forming square matrices

Lstsq

INDArray Lstsq(INDArray matrix, INDArray rhs, double l2_reguralizer, boolean fast)
INDArray Lstsq(INDArray matrix, INDArray rhs, double l2_reguralizer)

SDVariable Lstsq(SDVariable matrix, SDVariable rhs, double l2_reguralizer, boolean fast)
SDVariable Lstsq(SDVariable matrix, SDVariable rhs, double l2_reguralizer)
SDVariable Lstsq(String name, SDVariable matrix, SDVariable rhs, double l2_reguralizer, boolean fast)
SDVariable Lstsq(String name, SDVariable matrix, SDVariable rhs, double l2_reguralizer)

Solver for linear squares problems.

  • matrix (NUMERIC) - input tensor

  • rhs (NUMERIC) - input tensor

  • l2_reguralizer - regularizer

  • fast - fast mode, defaults to True - default = true

Lu

INDArray Lu(INDArray input)

SDVariable Lu(SDVariable input)
SDVariable Lu(String name, SDVariable input)

Computes LU decomposition.

  • input (NUMERIC) - input tensor

Matmul

INDArray Matmul(INDArray a, INDArray b)

SDVariable Matmul(SDVariable a, SDVariable b)
SDVariable Matmul(String name, SDVariable a, SDVariable b)

Performs matrix mutiplication on input tensors.

  • a (NUMERIC) - input tensor

  • b (NUMERIC) - input tensor

MatrixBandPart

INDArray[] MatrixBandPart(INDArray input, int minLower, int maxUpper)

SDVariable[] MatrixBandPart(SDVariable input, int minLower, int maxUpper)
SDVariable[] MatrixBandPart(String name, SDVariable input, int minLower, int maxUpper)

Copy a tensor setting outside a central band in each innermost matrix.

  • input (NUMERIC) - input tensor

  • minLower - lower diagonal count

  • maxUpper - upper diagonal count

Qr

INDArray[] Qr(INDArray input, boolean full)
INDArray[] Qr(INDArray input)

SDVariable[] Qr(SDVariable input, boolean full)
SDVariable[] Qr(SDVariable input)
SDVariable[] Qr(String name, SDVariable input, boolean full)
SDVariable[] Qr(String name, SDVariable input)

Computes the QR decompositions of input matrix.

  • input (NUMERIC) - input tensor

  • full - full matrices mode - default = false

Solve

INDArray Solve(INDArray matrix, INDArray rhs, boolean adjoint)
INDArray Solve(INDArray matrix, INDArray rhs)

SDVariable Solve(SDVariable matrix, SDVariable rhs, boolean adjoint)
SDVariable Solve(SDVariable matrix, SDVariable rhs)
SDVariable Solve(String name, SDVariable matrix, SDVariable rhs, boolean adjoint)
SDVariable Solve(String name, SDVariable matrix, SDVariable rhs)

Solver for systems of linear equations.

  • matrix (NUMERIC) - input tensor

  • rhs (NUMERIC) - input tensor

  • adjoint - adjoint mode, defaults to False - default = false

TriangularSolve

INDArray TriangularSolve(INDArray matrix, INDArray rhs, boolean lower, boolean adjoint)

SDVariable TriangularSolve(SDVariable matrix, SDVariable rhs, boolean lower, boolean adjoint)
SDVariable TriangularSolve(String name, SDVariable matrix, SDVariable rhs, boolean lower, boolean adjoint)

Solver for systems of linear questions.

  • matrix (NUMERIC) - input tensor

  • rhs (NUMERIC) - input tensor

  • lower - defines whether innermost matrices in matrix are lower or upper triangular

  • adjoint - adjoint mode

cross

INDArray cross(INDArray a, INDArray b)

SDVariable cross(SDVariable a, SDVariable b)
SDVariable cross(String name, SDVariable a, SDVariable b)

Computes pairwise cross product.

  • a (NUMERIC) -

  • b (NUMERIC) -

diag

INDArray diag(INDArray input)

SDVariable diag(SDVariable input)
SDVariable diag(String name, SDVariable input)

Calculates diagonal tensor.

  • input (NUMERIC) -

diag_part

INDArray diag_part(INDArray input)

SDVariable diag_part(SDVariable input)
SDVariable diag_part(String name, SDVariable input)

Calculates diagonal tensor.

  • input (NUMERIC) -

logdet

INDArray logdet(INDArray input)

SDVariable logdet(SDVariable input)
SDVariable logdet(String name, SDVariable input)

Calculates log of determinant.

  • input (NUMERIC) -

mmul

INDArray mmul(INDArray x, INDArray y, boolean transposeX, boolean transposeY, boolean transposeZ)
INDArray mmul(INDArray x, INDArray y)

SDVariable mmul(SDVariable x, SDVariable y, boolean transposeX, boolean transposeY, boolean transposeZ)
SDVariable mmul(SDVariable x, SDVariable y)
SDVariable mmul(String name, SDVariable x, SDVariable y, boolean transposeX, boolean transposeY, boolean transposeZ)
SDVariable mmul(String name, SDVariable x, SDVariable y)

Matrix multiplication: out = mmul(x,y)

Supports specifying transpose argument to perform operation such as mmul(a^T, b), etc.

  • x (NUMERIC) - First input variable

  • y (NUMERIC) - Second input variable

  • transposeX - Transpose x (first argument) - default = false

  • transposeY - Transpose y (second argument) - default = false

  • transposeZ - Transpose result array - default = false

svd

INDArray svd(INDArray input, boolean fullUV, boolean computeUV, int switchNum)
INDArray svd(INDArray input, boolean fullUV, boolean computeUV)

SDVariable svd(SDVariable input, boolean fullUV, boolean computeUV, int switchNum)
SDVariable svd(SDVariable input, boolean fullUV, boolean computeUV)
SDVariable svd(String name, SDVariable input, boolean fullUV, boolean computeUV, int switchNum)
SDVariable svd(String name, SDVariable input, boolean fullUV, boolean computeUV)

Calculates singular value decomposition.

  • input (NUMERIC) -

  • fullUV -

  • computeUV -

  • switchNum - - default = 16

tri

INDArray tri(DataType dataType, int row, int column, int diagonal)
INDArray tri(int row, int column)

SDVariable tri(DataType dataType, int row, int column, int diagonal)
SDVariable tri(int row, int column)
SDVariable tri(String name, DataType dataType, int row, int column, int diagonal)
SDVariable tri(String name, int row, int column)

An array with ones at and below the given diagonal and zeros elsewhere.

  • dataType - Data type - default = DataType.FLOAT

  • row -

  • column -

  • diagonal - - default = 0

triu

INDArray triu(INDArray input, int diag)
INDArray triu(INDArray input)

SDVariable triu(SDVariable input, int diag)
SDVariable triu(SDVariable input)
SDVariable triu(String name, SDVariable input, int diag)
SDVariable triu(String name, SDVariable input)

Upper triangle of an array. Return a copy of a input tensor with the elements below the k-th diagonal zeroed.

  • input (NUMERIC) -

  • diag - - default = 0

PreviousImageNextLoss

Last updated 3 years ago

Was this helpful?