Deeplearning4j
Community ForumND4J JavadocDL4J Javadoc
EN 1.0.0-M2
EN 1.0.0-M2
  • Deeplearning4j Suite Overview
  • Release Notes
    • 1.0.0-M2
    • 1.0.0-M1.1
    • 1.0.0-M1
    • 1.0.0-beta7
    • 1.0.0-beta6
    • 1.0.0-beta5
    • 1.0.0-beta4
    • 1.0.0-beta3
    • 1.0.0-beta2
    • 1.0.0-beta
    • 1.0.0-alpha
    • 0.9.1
    • 0.9.0
    • 0.8.0
    • 0.7.2
    • 0.7.1
    • 0.7.0
    • 0.6.0
    • 0.5.0
    • 0.4.0
    • 1.00-M2.2
  • Multi-Project
    • Tutorials
      • Beginners
      • Quickstart
    • How To Guides
      • Import in to your favorite IDE
      • Contribute
        • Eclipse Contributors
      • Developer Docs
        • Github Actions/Build Infra
        • Javacpp
        • Release
        • Testing
      • Build From Source
      • Benchmark
      • Beginners
    • Reference
      • Examples Tour
    • Explanation
      • The core workflow
      • Configuration
        • Backends
          • Performance Issues
          • CPU
          • Cudnn
        • Memory
          • Workspaces
      • Build Tools
      • Snapshots
      • Maven
  • Deeplearning4j
    • Tutorials
      • Quick Start
      • Language Processing
        • Doc2Vec
        • Sentence Iterator
        • Tokenization
        • Vocabulary Cache
    • How To Guides
      • Custom Layers
      • Keras Import
        • Functional Models
        • Sequential Models
        • Custom Layers
        • Keras Import API Overview
          • Advanced Activations
          • Convolutional Layers
          • Core Layers
          • Embedding Layers
          • Local Layers
          • Noise Layers
          • Normalization Layers
          • Pooling Layers
          • Recurrent Layers
          • Wrapper Layers
        • Supported Features Overview
          • Activations
          • Constraints
          • Initializers
          • Losses
          • Optimizers
          • Regularizers
      • Tuning and Training
        • Visualization
        • Troubleshooting Training
        • Early Stopping
        • Evaluation
        • Transfer Learning
    • Reference
      • Model Zoo
        • Zoo Models
      • Activations
      • Auto Encoders
      • Computation Graph
      • Convolutional Layers
      • DataSet Iterators
      • Layers
      • Model Listeners
      • Saving and Loading Models
      • Multi Layer Network
      • Recurrent Layers
      • Updaters/Optimizers
      • Vertices
      • Word2vec/Glove/Doc2Vec
    • Explanation
  • datavec
    • Tutorials
      • Overview
    • How To Guides
    • Reference
      • Analysis
      • Conditions
      • Executors
      • Filters
      • Normalization
      • Operations
      • Transforms
      • Readers
      • Records
      • Reductions
      • Schemas
      • Serialization
      • Visualization
    • Explanation
  • Nd4j
    • Tutorials
      • Quickstart
    • How To Guides
      • Other Framework Interop
        • Tensorflow
        • TVM
        • Onnx
      • Matrix Manipulation
      • Element wise Operations
      • Basics
    • Reference
      • Op Descriptor Format
      • Tensor
      • Syntax
    • Explanation
  • Samediff
    • Tutorials
      • Quickstart
    • How To Guides
      • Importing Tensorflow
      • Adding Operations
        • codegen
    • Reference
      • Operation Namespaces
        • Base Operations
        • Bitwise
        • CNN
        • Image
        • LinAlg
        • Loss
        • Math
        • NN
        • Random
        • RNN
      • Variables
    • Explanation
      • Model Import Framework
  • Libnd4j
    • How To Guides
      • Building on Windows
      • Building for raspberry pi or Jetson Nano
      • Building on ios
      • How to Add Operations
      • How to Setup CLion
    • Reference
      • Understanding graph execution
      • Overview of working with libnd4j
      • Helpers Overview (CUDNN, OneDNN,Armcompute)
    • Explanation
  • Python4j
    • Tutorials
      • Quickstart
    • How To Guides
      • Write Python Script
    • Reference
      • Python Types
      • Python Path
      • Garbage Collection
      • Python Script Execution
    • Explanation
  • Spark
    • Tutorials
      • DL4J on Spark Quickstart
    • How To Guides
      • How To
      • Data How To
    • Reference
      • Parameter Server
      • Technical Reference
    • Explanation
      • Spark API Reference
  • codegen
Powered by GitBook
On this page
  • Highlights - 1.0.0-beta Release
  • Deeplearning4J
  • Deeplearning4J: New Features
  • Deeplearning4J: Bug Fixes and Optimizations
  • Deeplearning4J: API Changes (Transition Guide): 1.0.0-alpha to 1.0.0-beta
  • Deelpearning4J: 1.0.0-beta Known Issues
  • Deeplearing4J: Keras Import
  • Deeplearning4J: Keras Import - API Changes (Transition Guide): 1.0.0-alpha to 1.0.0-beta
  • ND4J
  • ND4J: New Features
  • ND4J: Known Issues
  • ND4J: API Changes (Transition Guide): 1.0.0-alpha to 1.0.0-beta
  • DataVec
  • DataVec: New Features
  • DataVec: Optimizations and Bug Fixes
  • DataVec: API Changes (Transition Guide): 1.0.0-alpha to 1.0.0-beta
  • Arbiter
  • Arbiter: New Features
  • Arbiter: Fixes

Was this helpful?

Export as PDF
  1. Release Notes

1.0.0-beta

Highlights - 1.0.0-beta Release

  • Performance and memory optimizations for DL4J

Deeplearning4J

Deeplearning4J: New Features

  • New or enhanced layers:

    • Added Cropping1D layer Link

    • Added Convolution3D, Cropping3D, UpSampling3D, ZeroPadding3D, Subsampling3D layers (all with Keras import support): Link Link

    • Added EmbeddingSequenceLayer (EmbeddingLayer for time series) Link

    • Added OCNNOutputLayer (one-class neural network) - implementation of this paper - Link

    • Added FrozenLayerWithBackprop layer Link

    • Added DepthwiseConvolution2D layer Link

  • Added ComputationGraph.output(DataSetIterator) method Link

  • Added MultiLayerNetwork/ComputationGraph.layerInputSize methods Link Link

  • Added SparkComputationGraph.feedForwardWithKey overload with feature mask support Link

  • Added MultiLayerNetwork.calculateGradients method (for easily getting parameter and input gradients, for example for some model interpretabilithy approaches) Link Link

  • Added support to get input/activation types for each layer from configuration: ComputationGraphConfiguration.getLayerActivationTypes(InputType...), ComputationGraphConfiguration.GraphBuilder.getLayerActivationTypes(), NeuralNetConfiguration.ListBuilder.getLayerActivationTypes(), MultiLayerConfiguration.getLayerActivationTypes(InputType) methods Link

  • Evaluation.stats() now prints confusion matrix in easier to read matrix format, rather than list format Link

  • Added ModelSerializer.addObjectToFile, .getObjectFromFile and .listObjectsInFile for storing arbitrary Java objects in same file as saved network Link

  • Added SpatialDropout support (with Keras import support) Link

  • Added MultiLayerNetwork/ComputationGraph.fit((Multi)DataSetIterator, int numEpochs) overloads Link

  • Added performance (hardware) listeners: SystemInfoPrintListener and SystemInfoFilePrintListener Link

Deeplearning4J: Bug Fixes and Optimizations

  • Performance and memory optimizations via optimizations of internal use of workspaces Link

  • Reflections library has entirely been removed from DL4J and is no longer required for custom layer serialization/deserialization Link, Link

    • Fixes issues with custom and some Keras import layers on Android

  • RecordReaderMultiDataSetIterator will no longer try to convert unused columns to numerical values Link

  • Added new model zoo models:

    • (to do)

  • Fixes for Android compilation (removed duplicate classes, aligned versions, removed some dependencies) Link Link Link

  • Fix for RecordReaderMulitDataSetIterator where output could be incorrect for some constructors Link

  • Non-frozen layers before a frozen layer will no longer be skipped during backprop (useful for GANs and similar architectures) Link Link

  • Fixed issue where ComputationGraph topological sort may not be consistent on all platforms; could sometimes break ComputationGraphs (with multiple valid topological orderings) trained on PC and deployed on Android Link

  • Fixed issue with CuDNN batch norm using 1-decay instead of decay Link

  • deeplearning4j-cuda no longer throws exceptions if present on classpath with nd4j-native backend set to higher priority Link

  • Added RNG control for CifarDataSetIterator Link

  • WordVectorSerializer now deletes temp files immediately once done Link

Deeplearning4J: API Changes (Transition Guide): 1.0.0-alpha to 1.0.0-beta

  • WorkspaceMode.SINGLE and SEPARATE have been deprecated; use WorkspaceMode.ENABLED instead

  • Internal layer API changes: custom layers will need to be updated to the new Layer API - see built-in layers or custom layer example

  • Custom layers etc in pre-1.0.0-beta JSON (ModelSerializer) format need to be registered before they can be deserialized due to JSON format change. Built-in layers and models saved in 1.0.0-beta or later do not require this. Use NeuralNetConfiguration.registerLegacyCustomClassesForJSON(Class) for this purpose

  • IterationListener has been deprecated in favor of TrainingListener. For existing custom listeners, switch from implements TrainingListener to extends BaseTrainingListener Link

  • ExistingDataSetIterator has been deprecated; use fit(DataSetIterator, int numEpochs) method instead

Deelpearning4J: 1.0.0-beta Known Issues

  • ComputationGraph TrainingListener onEpochStart and onEpochEnd methods are not being called correctly

  • DL4J Zoo Model FaceNetNN4Small2 model configuration is incorrect, causing issues during forward pass

  • Early stopping score calculators with values thar should be maximized (accuracy, f1 etc) are not working properly (values are minimized not maximized). Workaround: override ScoreCalculator.calculateScore(...) and return 1.0 - super.calculateScore(...).

Deeplearing4J: Keras Import

Deeplearning4J: Keras Import - API Changes (Transition Guide): 1.0.0-alpha to 1.0.0-beta

ND4J

ND4J: New Features

ND4J: Known Issues

  • Not all op gradients implemented for automatic differentiation

  • Vast majority of new operations added in 1.0.0-beta do NOT use GPU yet.

ND4J: API Changes (Transition Guide): 1.0.0-alpha to 1.0.0-beta

DataVec

DataVec: New Features

  • ImageRecordReader now logs number of inferred label classes (to reduce risk of users missing a problem if something is misconfigured) Link

  • Added AnalyzeSpark.getUnique overload for multiple columns Link

  • Added performance/timing module Link

DataVec: Optimizations and Bug Fixes

  • Reduced ImageRecordReader garbage generation via buffer reuse Link

  • Fixes for Android compilation (aligned versions, removed some dependencies) Link Link

  • Removed Reflections library use in DataVec Link

  • Fix for TransformProcessRecordReader batch support Link

  • Fix for TransformProcessRecordReader with filter operations Link

  • Fixed issue with ImageRecordReader/ParentPathLabelGenerator incorrectly filtering directories containing . character(s) Link

  • ShowImageTransform now initializes frame lazily to avoid blank windows Link

DataVec: API Changes (Transition Guide): 1.0.0-alpha to 1.0.0-beta

  • DataVec ClassPathResource has been deprecated; use nd4j-common version instead Link

Arbiter

Arbiter: New Features

  • Added LayerSpace for OCNN (one-class neural network)

Arbiter: Fixes

  • Fixed timestamp issue that could cause incorrect rendering of first model's results in UI Link

  • Execution now waits for last model(s) to complete before returning when a termination condition is hit Link

  • As per DL4J etc: use of Reflections library has been removed entirely from Arbiter Link

  • Remove use of Eclipse Collections library due to issues with Android compilation Link

  • Improved cleanup of completed models to reduce maximum memory requirements for training Link

Previous1.0.0-beta2Next1.0.0-alpha

Last updated 3 years ago

Was this helpful?