Deeplearning4j
Community ForumND4J JavadocDL4J Javadoc
EN 1.0.0-beta6
EN 1.0.0-beta6
  • Eclipse DeepLearning4J
  • Getting Started
    • Quickstart
    • Tutorials
      • Quickstart with MNIST
      • MultiLayerNetwork And ComputationGraph
      • Logistic Regression
      • Built-in Data Iterators
      • Feed Forward Networks
      • Basic Autoencoder
      • Advanced Autoencoder
      • Convolutional Networks
      • Recurrent Networks
      • Early Stopping
      • Layers and Preprocessors
      • Hyperparameter Optimization
      • Using Multiple GPUs
      • Clinical Time Series LSTM
      • Sea Temperature Convolutional LSTM
      • Sea Temperature Convolutional LSTM 2
      • Instacart Multitask Example
      • Instacart Single Task Example
      • Cloud Detection Example
    • Core Concepts
    • Cheat Sheet
    • Examples Tour
    • Deep Learning Beginners
    • Build from Source
    • Contribute
      • Eclipse Contributors
    • Benchmark Guide
    • About
    • Release Notes
  • Configuration
    • Backends
      • CPU and AVX
      • cuDNN
      • Performance Issues
    • Memory Management
      • Memory Workspaces
    • Snapshots
    • Maven
    • SBT, Gradle, & Others
  • Models
    • Autoencoders
    • Multilayer Network
    • Computation Graph
    • Convolutional Neural Network
    • Recurrent Neural Network
    • Layers
    • Vertices
    • Iterators
    • Listeners
    • Custom Layers
    • Model Persistence
    • Activations
    • Updaters
  • Model Zoo
    • Overview
    • Zoo Models
  • ND4J
    • Overview
    • Quickstart
    • Backend
    • Basics
    • Elementwise Operations
    • Matrix Manipulation
    • Syntax
    • Tensors
  • SAMEDIFF
    • Importing TensorFlow models
    • Variables
    • Ops
    • Adding Ops
  • Tuning & Training
    • Evaluation
    • Visualization
    • Trouble Shooting
    • Early Stopping
    • t-SNE Visualization
    • Transfer Learning
  • DISTRIBUTED DEEP LEARNING
    • Introduction/Getting Started
    • Technical Explanation
    • Spark Guide
    • Spark Data Pipelines Guide
    • API Reference
    • Parameter Server
  • Keras Import
    • Overview
    • Get Started
    • Supported Features
      • Activations
      • Losses
      • Regularizers
      • Initializers
      • Constraints
      • Optimizers
    • Functional Model
    • Sequential Model
    • API Reference
      • Core Layers
      • Convolutional Layers
      • Embedding Layers
      • Local Layers
      • Noise Layers
      • Normalization Layers
      • Pooling Layers
      • Recurrent Layers
      • Wrapper Layers
      • Advanced Activations
  • Arbiter
    • Overview
    • Layer Spaces
    • Parameter Spaces
  • Datavec
    • Overview
    • Records
    • Reductions
    • Schema
    • Serialization
    • Transforms
    • Analysis
    • Readers
    • Conditions
    • Executors
    • Filters
    • Operations
    • Normalization
    • Visualization
  • Language Processing
    • Overview
    • Word2Vec
    • Doc2Vec
    • Sentence Iteration
    • Tokenization
    • Vocabulary Cache
  • Mobile (Android)
    • Setup
    • Tutorial: First Steps
    • Tutorial: Classifier
    • Tutorial: Image Classifier
  • FAQ
  • Press
  • Support
  • Why Deep Learning?
Powered by GitBook
On this page

Was this helpful?

Edit on Git
Export as PDF

Press

List of press articles on Eclipse Deeplearning4j.

PreviousFAQNextSupport

Last updated 5 years ago

Was this helpful?

A non-exhaustive list of prominent and/or interesting media stories about deep learning, with salient snippets.

  • , by John Markoff; Nov. 23, 2012

    A program created by scientists at the Swiss A. I. Lab at the University of Lugano won a pattern recognition contest by outperforming both competing software systems and a human expert in identifying images in a database of German traffic signs.

    The winning program accurately identified 99.46 percent of the images in a set of 50,000; the top score in a group of 32 human participants was 99.22 percent, and the average for the humans was 98.84 percent.

    This summer, Jeff Dean, a Google technical fellow, and Andrew Y. Ng, a Stanford computer scientist, programmed a cluster of 16,000 computers to train itself to automatically recognize images in a library of 14 million pictures of 20,000 different objects. Although the accuracy rate was low — 15.8 percent — the system did 70 percent better than the most advanced previous one.

  • ; Quentin Hardy; Jan. 16, 2015

    --A smart recruiting play by Facebook. They happen to retain patent claims to anything produced with this OS software.

Scientists See Promise in Deep-Learning Programs
Facebook Offers Artificial Intelligence Tech to Open Source Group