Deeplearning4j
Community ForumND4J JavadocDL4J Javadoc
EN 1.0.0-beta7
EN 1.0.0-beta7
  • Eclipse DeepLearning4J
  • Getting Started
    • Quickstart
      • Untitled
    • Tutorials
      • Quickstart with MNIST
      • MultiLayerNetwork And ComputationGraph
      • Logistic Regression
      • Built-in Data Iterators
      • Feed Forward Networks
      • Basic Autoencoder
      • Advanced Autoencoder
      • Convolutional Networks
      • Recurrent Networks
      • Early Stopping
      • Layers and Preprocessors
      • Hyperparameter Optimization
      • Using Multiple GPUs
      • Clinical Time Series LSTM
      • Sea Temperature Convolutional LSTM
      • Sea Temperature Convolutional LSTM 2
      • Instacart Multitask Example
      • Instacart Single Task Example
      • Cloud Detection Example
    • Core Concepts
    • Cheat Sheet
    • Examples Tour
    • Deep Learning Beginners
    • Build from Source
    • Contribute
      • Eclipse Contributors
    • Benchmark Guide
    • About
    • Release Notes
  • Configuration
    • Backends
      • CPU and AVX
      • cuDNN
      • Performance Issues
    • Memory Management
      • Memory Workspaces
    • Snapshots
    • Maven
    • SBT, Gradle, & Others
  • Models
    • Autoencoders
    • Multilayer Network
    • Computation Graph
    • Convolutional Neural Network
    • Recurrent Neural Network
    • Layers
    • Vertices
    • Iterators
    • Listeners
    • Custom Layers
    • Model Persistence
    • Activations
    • Updaters
  • Model Zoo
    • Overview
    • Zoo Models
  • ND4J
    • Overview
    • Quickstart
    • Basics
    • Elementwise Operations
    • Matrix Manipulation
    • Syntax
    • Tensors
  • SAMEDIFF
    • Importing TensorFlow models
    • Variables
    • Ops
    • Adding Ops
  • ND4J & SameDiff Ops
    • Overview
    • Bitwise
    • Linalg
    • Math
    • Random
    • BaseOps
    • CNN
    • Image
    • Loss
    • NN
    • RNN
  • Tuning & Training
    • Evaluation
    • Visualization
    • Trouble Shooting
    • Early Stopping
    • t-SNE Visualization
    • Transfer Learning
  • Keras Import
    • Overview
    • Get Started
    • Supported Features
      • Activations
      • Losses
      • Regularizers
      • Initializers
      • Constraints
      • Optimizers
    • Functional Model
    • Sequential Model
    • Custom Layers
    • API Reference
      • Core Layers
      • Convolutional Layers
      • Embedding Layers
      • Local Layers
      • Noise Layers
      • Normalization Layers
      • Pooling Layers
      • Recurrent Layers
      • Wrapper Layers
      • Advanced Activations
  • DISTRIBUTED DEEP LEARNING
    • Introduction/Getting Started
    • Technical Explanation
    • Spark Guide
    • Spark Data Pipelines Guide
    • API Reference
    • Parameter Server
  • Arbiter
    • Overview
    • Layer Spaces
    • Parameter Spaces
  • Datavec
    • Overview
    • Records
    • Reductions
    • Schema
    • Serialization
    • Transforms
    • Analysis
    • Readers
    • Conditions
    • Executors
    • Filters
    • Operations
    • Normalization
    • Visualization
  • Language Processing
    • Overview
    • Word2Vec
    • Doc2Vec
    • Sentence Iteration
    • Tokenization
    • Vocabulary Cache
  • Mobile (Android)
    • Setup
    • Tutorial: First Steps
    • Tutorial: Classifier
    • Tutorial: Image Classifier
    • FAQ
    • Press
    • Support
    • Why Deep Learning?
Powered by GitBook
On this page
  • ActivationLayerSpace
  • AutoEncoderLayerSpace
  • BatchNormalizationSpace
  • Bidirectional
  • ConvolutionLayerSpace
  • DenseLayerSpace
  • EmbeddingLayerSpace
  • GlobalPoolingLayerSpace
  • GravesBidirectionalLSTMLayerSpace
  • GravesLSTMLayerSpace
  • LSTMLayerSpace
  • OCNNLayerSpace
  • OutputLayerSpace
  • RnnOutputLayerSpace
  • SubsamplingLayerSpace
  • VariationalAutoencoderLayerSpace

Was this helpful?

Edit on Git
Export as PDF
  1. Arbiter

Layer Spaces

Set a search spaces for layers.

PreviousOverviewNextParameter Spaces

Last updated 5 years ago

Was this helpful?

ActivationLayerSpace

AutoEncoderLayerSpace

Layer space for autoencoder layers

BatchNormalizationSpace

LayerSpace for batch normalization layers

Bidirectional

Bidirectional layer wrapper. Can be used wrap an existing layer space, in the same way that

ConvolutionLayerSpace

Layer space for convolutional layers

DenseLayerSpace

layer hyperparameter configuration space for dense layers (i.e., multi-layer perceptron layers)

EmbeddingLayerSpace

GlobalPoolingLayerSpace

GravesBidirectionalLSTMLayerSpace

Layer space for Bidirectional LSTM layers

GravesLSTMLayerSpace

Layer space for LSTM layers

LSTMLayerSpace

Layer space for LSTM layers

OCNNLayerSpace

Use hiddenLayerSize instead

numHidden

public Builder numHidden(int numHidden) 

Use hiddenLayerSize instead

  • param numHidden

  • return

OutputLayerSpace

Layer hyperparameter configuration space for output layers

RnnOutputLayerSpace

Layer hyperparametor configuration space for RnnOutputLayer

SubsamplingLayerSpace

Layer hyperparameter configuration space for subsampling layers

VariationalAutoencoderLayerSpace

[source]
[source]
[source]
[source]
[source]
[source]
[source]
[source]
[source]
[source]
[source]
[source]
[source]
[source]
[source]
[source]