Deeplearning4j
Community ForumND4J JavadocDL4J Javadoc
EN 1.0.0-beta7
EN 1.0.0-beta7
  • Eclipse DeepLearning4J
  • Getting Started
    • Quickstart
      • Untitled
    • Tutorials
      • Quickstart with MNIST
      • MultiLayerNetwork And ComputationGraph
      • Logistic Regression
      • Built-in Data Iterators
      • Feed Forward Networks
      • Basic Autoencoder
      • Advanced Autoencoder
      • Convolutional Networks
      • Recurrent Networks
      • Early Stopping
      • Layers and Preprocessors
      • Hyperparameter Optimization
      • Using Multiple GPUs
      • Clinical Time Series LSTM
      • Sea Temperature Convolutional LSTM
      • Sea Temperature Convolutional LSTM 2
      • Instacart Multitask Example
      • Instacart Single Task Example
      • Cloud Detection Example
    • Core Concepts
    • Cheat Sheet
    • Examples Tour
    • Deep Learning Beginners
    • Build from Source
    • Contribute
      • Eclipse Contributors
    • Benchmark Guide
    • About
    • Release Notes
  • Configuration
    • Backends
      • CPU and AVX
      • cuDNN
      • Performance Issues
    • Memory Management
      • Memory Workspaces
    • Snapshots
    • Maven
    • SBT, Gradle, & Others
  • Models
    • Autoencoders
    • Multilayer Network
    • Computation Graph
    • Convolutional Neural Network
    • Recurrent Neural Network
    • Layers
    • Vertices
    • Iterators
    • Listeners
    • Custom Layers
    • Model Persistence
    • Activations
    • Updaters
  • Model Zoo
    • Overview
    • Zoo Models
  • ND4J
    • Overview
    • Quickstart
    • Basics
    • Elementwise Operations
    • Matrix Manipulation
    • Syntax
    • Tensors
  • SAMEDIFF
    • Importing TensorFlow models
    • Variables
    • Ops
    • Adding Ops
  • ND4J & SameDiff Ops
    • Overview
    • Bitwise
    • Linalg
    • Math
    • Random
    • BaseOps
    • CNN
    • Image
    • Loss
    • NN
    • RNN
  • Tuning & Training
    • Evaluation
    • Visualization
    • Trouble Shooting
    • Early Stopping
    • t-SNE Visualization
    • Transfer Learning
  • Keras Import
    • Overview
    • Get Started
    • Supported Features
      • Activations
      • Losses
      • Regularizers
      • Initializers
      • Constraints
      • Optimizers
    • Functional Model
    • Sequential Model
    • Custom Layers
    • API Reference
      • Core Layers
      • Convolutional Layers
      • Embedding Layers
      • Local Layers
      • Noise Layers
      • Normalization Layers
      • Pooling Layers
      • Recurrent Layers
      • Wrapper Layers
      • Advanced Activations
  • DISTRIBUTED DEEP LEARNING
    • Introduction/Getting Started
    • Technical Explanation
    • Spark Guide
    • Spark Data Pipelines Guide
    • API Reference
    • Parameter Server
  • Arbiter
    • Overview
    • Layer Spaces
    • Parameter Spaces
  • Datavec
    • Overview
    • Records
    • Reductions
    • Schema
    • Serialization
    • Transforms
    • Analysis
    • Readers
    • Conditions
    • Executors
    • Filters
    • Operations
    • Normalization
    • Visualization
  • Language Processing
    • Overview
    • Word2Vec
    • Doc2Vec
    • Sentence Iteration
    • Tokenization
    • Vocabulary Cache
  • Mobile (Android)
    • Setup
    • Tutorial: First Steps
    • Tutorial: Classifier
    • Tutorial: Image Classifier
    • FAQ
    • Press
    • Support
    • Why Deep Learning?
Powered by GitBook
On this page
  • Cholesky
  • Lstsq
  • Lu
  • Matmul
  • MatrixBandPart
  • Qr
  • Solve
  • TriangularSolve
  • cross
  • diag
  • diag_part
  • logdet
  • mmul
  • svd
  • tri
  • triu

Was this helpful?

Edit on Git
Export as PDF
  1. ND4J & SameDiff Ops

Linalg

Cholesky

INDArray Cholesky(INDArray input)

SDVariable Cholesky(SDVariable input)
SDVariable Cholesky(String name, SDVariable input)

Computes the Cholesky decomposition of one or more square matrices.

  • input (NUMERIC) - Input tensor with inner-most 2 dimensions forming square matrices

Lstsq

INDArray Lstsq(INDArray matrix, INDArray rhs, double l2_reguralizer, boolean fast)
INDArray Lstsq(INDArray matrix, INDArray rhs, double l2_reguralizer)

SDVariable Lstsq(SDVariable matrix, SDVariable rhs, double l2_reguralizer, boolean fast)
SDVariable Lstsq(SDVariable matrix, SDVariable rhs, double l2_reguralizer)
SDVariable Lstsq(String name, SDVariable matrix, SDVariable rhs, double l2_reguralizer, boolean fast)
SDVariable Lstsq(String name, SDVariable matrix, SDVariable rhs, double l2_reguralizer)

Solver for linear squares problems.

  • matrix (NUMERIC) - input tensor

  • rhs (NUMERIC) - input tensor

  • l2_reguralizer - regularizer

  • fast - fast mode, defaults to True - default = true

Lu

INDArray Lu(INDArray input)

SDVariable Lu(SDVariable input)
SDVariable Lu(String name, SDVariable input)

Computes LU decomposition.

  • input (NUMERIC) - input tensor

Matmul

INDArray Matmul(INDArray a, INDArray b)

SDVariable Matmul(SDVariable a, SDVariable b)
SDVariable Matmul(String name, SDVariable a, SDVariable b)

Performs matrix mutiplication on input tensors.

  • a (NUMERIC) - input tensor

  • b (NUMERIC) - input tensor

MatrixBandPart

INDArray[] MatrixBandPart(INDArray input, int minLower, int maxUpper)

SDVariable[] MatrixBandPart(SDVariable input, int minLower, int maxUpper)
SDVariable[] MatrixBandPart(String name, SDVariable input, int minLower, int maxUpper)

Copy a tensor setting outside a central band in each innermost matrix.

  • input (NUMERIC) - input tensor

  • minLower - lower diagonal count

  • maxUpper - upper diagonal count

Qr

INDArray[] Qr(INDArray input, boolean full)
INDArray[] Qr(INDArray input)

SDVariable[] Qr(SDVariable input, boolean full)
SDVariable[] Qr(SDVariable input)
SDVariable[] Qr(String name, SDVariable input, boolean full)
SDVariable[] Qr(String name, SDVariable input)

Computes the QR decompositions of input matrix.

  • input (NUMERIC) - input tensor

  • full - full matrices mode - default = false

Solve

INDArray Solve(INDArray matrix, INDArray rhs, boolean adjoint)
INDArray Solve(INDArray matrix, INDArray rhs)

SDVariable Solve(SDVariable matrix, SDVariable rhs, boolean adjoint)
SDVariable Solve(SDVariable matrix, SDVariable rhs)
SDVariable Solve(String name, SDVariable matrix, SDVariable rhs, boolean adjoint)
SDVariable Solve(String name, SDVariable matrix, SDVariable rhs)

Solver for systems of linear equations.

  • matrix (NUMERIC) - input tensor

  • rhs (NUMERIC) - input tensor

  • adjoint - adjoint mode, defaults to False - default = false

TriangularSolve

INDArray TriangularSolve(INDArray matrix, INDArray rhs, boolean lower, boolean adjoint)

SDVariable TriangularSolve(SDVariable matrix, SDVariable rhs, boolean lower, boolean adjoint)
SDVariable TriangularSolve(String name, SDVariable matrix, SDVariable rhs, boolean lower, boolean adjoint)

Solver for systems of linear questions.

  • matrix (NUMERIC) - input tensor

  • rhs (NUMERIC) - input tensor

  • lower - defines whether innermost matrices in matrix are lower or upper triangular

  • adjoint - adjoint mode

cross

INDArray cross(INDArray a, INDArray b)

SDVariable cross(SDVariable a, SDVariable b)
SDVariable cross(String name, SDVariable a, SDVariable b)

Computes pairwise cross product.

  • a (NUMERIC) -

  • b (NUMERIC) -

diag

INDArray diag(INDArray input)

SDVariable diag(SDVariable input)
SDVariable diag(String name, SDVariable input)

Calculates diagonal tensor.

  • input (NUMERIC) -

diag_part

INDArray diag_part(INDArray input)

SDVariable diag_part(SDVariable input)
SDVariable diag_part(String name, SDVariable input)

Calculates diagonal tensor.

  • input (NUMERIC) -

logdet

INDArray logdet(INDArray input)

SDVariable logdet(SDVariable input)
SDVariable logdet(String name, SDVariable input)

Calculates log of determinant.

  • input (NUMERIC) -

mmul

INDArray mmul(INDArray x, INDArray y, boolean transposeX, boolean transposeY, boolean transposeZ)
INDArray mmul(INDArray x, INDArray y)

SDVariable mmul(SDVariable x, SDVariable y, boolean transposeX, boolean transposeY, boolean transposeZ)
SDVariable mmul(SDVariable x, SDVariable y)
SDVariable mmul(String name, SDVariable x, SDVariable y, boolean transposeX, boolean transposeY, boolean transposeZ)
SDVariable mmul(String name, SDVariable x, SDVariable y)

Matrix multiplication: out = mmul(x,y)

Supports specifying transpose argument to perform operation such as mmul(a^T, b), etc.

  • x (NUMERIC) - First input variable

  • y (NUMERIC) - Second input variable

  • transposeX - Transpose x (first argument) - default = false

  • transposeY - Transpose y (second argument) - default = false

  • transposeZ - Transpose result array - default = false

svd

INDArray svd(INDArray input, boolean fullUV, boolean computeUV, int switchNum)
INDArray svd(INDArray input, boolean fullUV, boolean computeUV)

SDVariable svd(SDVariable input, boolean fullUV, boolean computeUV, int switchNum)
SDVariable svd(SDVariable input, boolean fullUV, boolean computeUV)
SDVariable svd(String name, SDVariable input, boolean fullUV, boolean computeUV, int switchNum)
SDVariable svd(String name, SDVariable input, boolean fullUV, boolean computeUV)

Calculates singular value decomposition.

  • input (NUMERIC) -

  • fullUV -

  • computeUV -

  • switchNum - - default = 16

tri

INDArray tri(DataType dataType, int row, int column, int diagonal)
INDArray tri(int row, int column)

SDVariable tri(DataType dataType, int row, int column, int diagonal)
SDVariable tri(int row, int column)
SDVariable tri(String name, DataType dataType, int row, int column, int diagonal)
SDVariable tri(String name, int row, int column)

An array with ones at and below the given diagonal and zeros elsewhere.

  • dataType - Data type - default = DataType.FLOAT

  • row -

  • column -

  • diagonal - - default = 0

triu

INDArray triu(INDArray input, int diag)
INDArray triu(INDArray input)

SDVariable triu(SDVariable input, int diag)
SDVariable triu(SDVariable input)
SDVariable triu(String name, SDVariable input, int diag)
SDVariable triu(String name, SDVariable input)

Upper triangle of an array. Return a copy of a input tensor with the elements below the k-th diagonal zeroed.

  • input (NUMERIC) -

  • diag - - default = 0

PreviousBitwiseNextMath

Last updated 5 years ago

Was this helpful?