Deeplearning4j
Community ForumND4J JavadocDL4J Javadoc
EN 1.0.0-beta7
EN 1.0.0-beta7
  • Eclipse DeepLearning4J
  • Getting Started
    • Quickstart
      • Untitled
    • Tutorials
      • Quickstart with MNIST
      • MultiLayerNetwork And ComputationGraph
      • Logistic Regression
      • Built-in Data Iterators
      • Feed Forward Networks
      • Basic Autoencoder
      • Advanced Autoencoder
      • Convolutional Networks
      • Recurrent Networks
      • Early Stopping
      • Layers and Preprocessors
      • Hyperparameter Optimization
      • Using Multiple GPUs
      • Clinical Time Series LSTM
      • Sea Temperature Convolutional LSTM
      • Sea Temperature Convolutional LSTM 2
      • Instacart Multitask Example
      • Instacart Single Task Example
      • Cloud Detection Example
    • Core Concepts
    • Cheat Sheet
    • Examples Tour
    • Deep Learning Beginners
    • Build from Source
    • Contribute
      • Eclipse Contributors
    • Benchmark Guide
    • About
    • Release Notes
  • Configuration
    • Backends
      • CPU and AVX
      • cuDNN
      • Performance Issues
    • Memory Management
      • Memory Workspaces
    • Snapshots
    • Maven
    • SBT, Gradle, & Others
  • Models
    • Autoencoders
    • Multilayer Network
    • Computation Graph
    • Convolutional Neural Network
    • Recurrent Neural Network
    • Layers
    • Vertices
    • Iterators
    • Listeners
    • Custom Layers
    • Model Persistence
    • Activations
    • Updaters
  • Model Zoo
    • Overview
    • Zoo Models
  • ND4J
    • Overview
    • Quickstart
    • Basics
    • Elementwise Operations
    • Matrix Manipulation
    • Syntax
    • Tensors
  • SAMEDIFF
    • Importing TensorFlow models
    • Variables
    • Ops
    • Adding Ops
  • ND4J & SameDiff Ops
    • Overview
    • Bitwise
    • Linalg
    • Math
    • Random
    • BaseOps
    • CNN
    • Image
    • Loss
    • NN
    • RNN
  • Tuning & Training
    • Evaluation
    • Visualization
    • Trouble Shooting
    • Early Stopping
    • t-SNE Visualization
    • Transfer Learning
  • Keras Import
    • Overview
    • Get Started
    • Supported Features
      • Activations
      • Losses
      • Regularizers
      • Initializers
      • Constraints
      • Optimizers
    • Functional Model
    • Sequential Model
    • Custom Layers
    • API Reference
      • Core Layers
      • Convolutional Layers
      • Embedding Layers
      • Local Layers
      • Noise Layers
      • Normalization Layers
      • Pooling Layers
      • Recurrent Layers
      • Wrapper Layers
      • Advanced Activations
  • DISTRIBUTED DEEP LEARNING
    • Introduction/Getting Started
    • Technical Explanation
    • Spark Guide
    • Spark Data Pipelines Guide
    • API Reference
    • Parameter Server
  • Arbiter
    • Overview
    • Layer Spaces
    • Parameter Spaces
  • Datavec
    • Overview
    • Records
    • Reductions
    • Schema
    • Serialization
    • Transforms
    • Analysis
    • Readers
    • Conditions
    • Executors
    • Filters
    • Operations
    • Normalization
    • Visualization
  • Language Processing
    • Overview
    • Word2Vec
    • Doc2Vec
    • Sentence Iteration
    • Tokenization
    • Vocabulary Cache
  • Mobile (Android)
    • Setup
    • Tutorial: First Steps
    • Tutorial: Classifier
    • Tutorial: Image Classifier
    • FAQ
    • Press
    • Support
    • Why Deep Learning?
Powered by GitBook
On this page
  • Using filters
  • Available filters
  • ConditionFilter
  • Filter
  • FilterInvalidValues
  • InvalidNumColumns

Was this helpful?

Edit on Git
Export as PDF
  1. Datavec

Filters

Selection of data using conditions.

PreviousExecutorsNextOperations

Last updated 5 years ago

Was this helpful?

Using filters

Filters are a part of transforms and gives a DSL for you to keep parts of your dataset. Filters can be one-liners for single conditions or include complex boolean logic.

TransformProcess tp = new TransformProcess.Builder(inputDataSchema)
    .filter(new ConditionFilter(new CategoricalColumnCondition("MerchantCountryCode", ConditionOp.NotInSet, new HashSet<>(Arrays.asList("USA","CAN")))))
    .build();

You can also write your own filters by implementing the Filter interface, though it is much more often that you may want to create a custom condition instead.

Available filters

ConditionFilter

If condition is satisfied (returns true): remove the example or sequence If condition is not satisfied (returns false): keep the example or sequence

removeExample

public boolean removeExample(Object writables) 
  • param writables Example

  • return true if example should be removed, false to keep

removeSequence

public boolean removeSequence(Object sequence) 
  • param sequence sequence example

  • return true if example should be removed, false to keep

transform

public Schema transform(Schema inputSchema) 

Get the output schema for this transformation, given an input schema

  • param inputSchema

outputColumnName

public String outputColumnName() 

The output column name after the operation has been applied

  • return the output column name

columnName

public String columnName() 

The output column names This will often be the same as the input

  • return the output column names

Filter

Filter: a method of removing examples (or sequences) according to some condition

FilterInvalidValues

FilterInvalidValues: a filter operation that removes any examples (or sequences) if the examples/sequences contains invalid values in any of a specified set of columns. Invalid values are determined with respect to the schema

transform

public Schema transform(Schema inputSchema) 
  • param columnsToFilterIfInvalid Columns to check for invalid values

removeExample

public boolean removeExample(Object writables) 
  • param writables Example

  • return true if example should be removed, false to keep

removeSequence

public boolean removeSequence(Object sequence) 
  • param sequence sequence example

  • return true if example should be removed, false to keep

outputColumnName

public String outputColumnName() 

The output column name after the operation has been applied

  • return the output column name

columnName

public String columnName() 

The output column names This will often be the same as the input

  • return the output column names

InvalidNumColumns

Remove invalid records of a certain size.

removeExample

public boolean removeExample(Object writables) 
  • param writables Example

  • return true if example should be removed, false to keep

removeSequence

public boolean removeSequence(Object sequence) 
  • param sequence sequence example

  • return true if example should be removed, false to keep

removeExample

public boolean removeExample(List<Writable> writables) 
  • param writables Example

  • return true if example should be removed, false to keep

removeSequence

public boolean removeSequence(List<List<Writable>> sequence) 
  • param sequence sequence example

  • return true if example should be removed, false to keep

transform

public Schema transform(Schema inputSchema) 

Get the output schema for this transformation, given an input schema

  • param inputSchema

outputColumnName

public String outputColumnName() 

The output column name after the operation has been applied

  • return the output column name

columnName

public String columnName() 

The output column names This will often be the same as the input

  • return the output column names

[source]
[source]
[source]
[source]