Deeplearning4j
Community ForumND4J JavadocDL4J Javadoc
EN 1.0.0-M1.1
EN 1.0.0-M1.1
  • Deeplearning4j Suite Overview
  • Release Notes
    • 1.0.0-M1.1
    • 1.0.0-M1
    • 1.0.0-beta7
    • 1.0.0-beta6
    • 1.0.0-beta5
    • 1.0.0-beta4
    • 1.0.0-beta3
    • 1.0.0-beta2
    • 1.0.0-beta
    • 1.0.0-alpha
    • 0.9.1
    • 0.9.0
    • 0.8.0
    • 0.7.2
    • 0.7.1
    • 0.7.0
    • 0.6.0
    • 0.5.0
    • 0.4.0
  • Multi-Project
    • Tutorials
      • Beginners
      • Quickstart
    • How To Guides
      • Import in to your favorite IDE
      • Contribute
        • Eclipse Contributors
      • Developer Docs
        • Github Actions/Build Infra
        • Javacpp
        • Release
        • Testing
      • Build From Source
      • Benchmark
      • Beginners
    • Reference
      • Examples Tour
    • Explanation
      • The core workflow
      • Configuration
        • Backends
          • Performance Issues
          • CPU
          • Cudnn
        • Memory
          • Workspaces
      • Build Tools
      • Snapshots
      • Maven
  • Deeplearning4j
    • Tutorials
      • Quick Start
      • Language Processing
        • Doc2Vec
        • Sentence Iterator
        • Tokenization
        • Vocabulary Cache
    • How To Guides
      • Custom Layers
      • Keras Import
        • Functional Models
        • Sequential Models
        • Custom Layers
        • Keras Import API Overview
          • Advanced Activations
          • Convolutional Layers
          • Core Layers
          • Embedding Layers
          • Local Layers
          • Noise Layers
          • Normalization Layers
          • Pooling Layers
          • Recurrent Layers
          • Wrapper Layers
        • Supported Features Overview
          • Activations
          • Constraints
          • Initializers
          • Losses
          • Optimizers
          • Regularizers
      • Tuning and Training
        • Visualization
        • Troubleshooting Training
        • Early Stopping
        • Evaluation
        • Transfer Learning
    • Reference
      • Model Zoo
        • Zoo Models
      • Activations
      • Auto Encoders
      • Computation Graph
      • Convolutional Layers
      • DataSet Iterators
      • Layers
      • Model Listeners
      • Saving and Loading Models
      • Multi Layer Network
      • Recurrent Layers
      • Updaters/Optimizers
      • Vertices
      • Word2vec/Glove/Doc2Vec
    • Explanation
  • datavec
    • Tutorials
      • Overview
    • How To Guides
    • Reference
      • Analysis
      • Conditions
      • Executors
      • Filters
      • Normalization
      • Operations
      • Transforms
      • Readers
      • Records
      • Reductions
      • Schemas
      • Serialization
      • Visualization
    • Explanation
  • Nd4j
    • Tutorials
      • Quickstart
    • How To Guides
      • Other Framework Interop
        • Tensorflow
        • TVM
        • Onnx
      • Matrix Manipulation
      • Element wise Operations
      • Basics
    • Reference
      • Op Descriptor Format
      • Tensor
      • Syntax
    • Explanation
  • Samediff
    • Tutorials
      • Quickstart
    • How To Guides
      • Importing Tensorflow
      • Adding Operations
        • codegen
    • Reference
      • Operation Namespaces
        • Base Operations
        • Bitwise
        • CNN
        • Image
        • LinAlg
        • Loss
        • Math
        • NN
        • Random
        • RNN
      • Variables
    • Explanation
      • Model Import Framework
  • Libnd4j
    • How To Guides
      • Building on Windows
      • Building for raspberry pi or Jetson Nano
      • Building on ios
      • How to Add Operations
      • How to Setup CLion
    • Reference
      • Understanding graph execution
      • Overview of working with libnd4j
      • Helpers Overview (CUDNN, OneDNN,Armcompute)
    • Explanation
  • Python4j
    • Tutorials
      • Quickstart
    • How To Guides
      • Write Python Script
    • Reference
      • Python Types
      • Python Path
      • Garbage Collection
      • Python Script Execution
    • Explanation
  • RL4j
    • Tutorials
    • How To Guides
    • Reference
    • Explanation
  • Spark
    • Tutorials
      • DL4J on Spark Quickstart
    • How To Guides
      • How To
      • Data How To
    • Reference
      • Parameter Server
      • Technical Reference
    • Explanation
      • Spark API Reference
  • codegen
Powered by GitBook
On this page

Was this helpful?

Edit on Git
Export as PDF
  1. Release Notes

0.9.0

Previous0.9.1Next0.8.0

Was this helpful?

Deeplearning4J

  • Workspaces feature added (faster training performance + less memory)

  • SharedTrainingMaster added for Spark network training (improved performance) ,

  • ParallelInference added - wrapper that server inference requests using internal batching and queues

  • ParallelWrapper now able to work with gradients sharing, in addition to existing parameters averaging mode

  • VPTree performance significantly improved

  • CacheMode network configuration option added - improved CNN and LSTM performance at the expense of additional memory use

  • LSTM layer added, with CuDNN support (Note that the existing GravesLSTM implementation does not support CuDNN)

  • New native model zoo with pretrained ImageNet, MNIST, and VGG-Face weights

  • Convolution performance improvements, including activation caching

  • Custom/user defined updaters are now supported

  • Evaluation improvements

    • EvaluationBinary, ROCBinary classes added: for evaluation of binary multi-class networks (sigmoid + xent output layers)

    • Evaluation and others now have G-Measure and Matthews Correlation Coefficient support; also macro + micro-averaging support for Evaluation class metrics

    • ComputationGraph and SparkComputationGraph evaluation convenience methods added (evaluateROC, etc)

    • ROC and ROCMultiClass support exact calculation (previous: thresholded calculation was used)

    • ROC classes now support area under precision-recall curve calculation; getting precision/recall/confusion matrix at specified thresholds (via PrecisionRecallCurve class)

    • RegressionEvaluation, ROCBinary etc now support per-output masking (in addition to per-example/per-time-step masking)

    • EvaluationCalibration added (residual plots, reliability diagrams, histogram of probabilities)

    • Evaluation and EvaluationBinary: now supports custom classification threshold or cost array

  • Optimizations: updaters, bias calculation

  • Network memory estimation functionality added. Memory requirements can be estimated from configuration without instantiating networks

  • New loss functions:

    • Mixture density loss function

    • F-Measure loss function

ND4J

  • Native parallel sort was added

  • New ops added: SELU/SELUDerivative, TAD-based comparisons, percentile/median, Reverse, Tan/TanDerivative, SinH, CosH, Entropy, ShannonEntropy, LogEntropy, AbsoluteMin/AbsoluteMax/AbsoluteSum, Atan2

  • New distance functions added: CosineDistance, HammingDistance, JaccardDistance

DataVec

  • TransformProcess and Transforms now support NDArrayWritables and NDArrayWritable columns

  • Multiple new Transform classes

Arbiter

    • UI now uses Play framework, integrates with DL4J UI (replaces Dropwizard backend). Dependency issues/clashing versions fixed.

    • Supports DL4J StatsStorage and StatsStorageRouter mechanisms (FileStatsStorage, Remote UI via RemoveUIStatsStorageRouter)

    • General UI improvements (additional information, formatting fixes)

Workspaces feature added

MapFileRecordReader and MapFileSequenceRecordReader added

Spark: Utilities to save and load JavaRDD<List<Writable>> and JavaRDD<List<List<Writable>> data to Hadoop MapFile and SequenceFile formats

Arbiter UI:

Link
Link 1
Link 2
Link
Link
Link
Link
Link
Link
Link
Link
Link
Link
Link 1
Link 2
Link
Link 1
Link 2
Link
Link
Link
Link 1
Link 2
Link
Link