CNN
Operation classes
avgPooling2d
2D Convolution layer operation - average pooling 2d
input (NUMERIC) - the input to average pooling 2d operation - 4d CNN (image) activations in NCHW format (shape [minibatch, channels, height, width]) or NHWC format (shape [minibatch, height, width, channels])
Pooling2DConfig - see Pooling2DConfig
avgPooling3d
3D convolution layer operation - average pooling 3d
input (NUMERIC) - the input to average pooling 3d operation - 5d activations in NCDHW format (shape [minibatch, channels, depth, height, width]) or NDHWC format (shape [minibatch, depth, height, width, channels])
Pooling3DConfig - see Pooling3DConfig
batchToSpace
Convolution 2d layer batch to space operation on 4d input.
Reduces input batch dimension by rearranging data into a larger spatial dimensions
x (NUMERIC) - Input variable. 4d input
blocks - Block size, in the height/width dimension (Size: Exactly(count=2))
croppingTop - (Size: Exactly(count=2))
croppingBottom - (Size: Exactly(count=2))
col2Im
col2im operation for use in 2D convolution operations. Outputs a 4d array with shape
[minibatch, inputChannels, height, width]
in (NUMERIC) - Input - rank 6 input with shape [minibatch, inputChannels, kernelHeight, kernelWidth, outputHeight, outputWidth]
Conv2DConfig - see Conv2DConfig
conv1d
Conv1d operation.
input (NUMERIC) - the inputs to conv1d
weights (NUMERIC) - weights for conv1d op - rank 3 array with shape [kernelSize, inputChannels, outputChannels]
bias (NUMERIC) - bias for conv1d op - rank 1 array with shape [outputChannels]. May be null.
Conv1DConfig - see Conv1DConfig
conv2d
2D Convolution operation with optional bias
layerInput (NUMERIC) - the input to max pooling 2d operation - 4d CNN (image) activations in NCHW format
weights (NUMERIC) - Weights for the convolution operation. 4 dimensions with format [kernelHeight, kernelWidth, inputChannels, outputChannels]
bias (NUMERIC) - Optional 1D bias array with shape [outputChannels]. May be null.
Conv2DConfig - see Conv2DConfig
conv3d
Convolution 3D operation with optional bias
input (NUMERIC) - the input to average pooling 3d operation - 5d activations in NCDHW format (shape [minibatch, channels, depth, height, width]) or NDHWC format (shape [minibatch, depth, height, width, channels])
weights (NUMERIC) - Weights for conv3d. Rank 5 with shape [kernelDepth, kernelHeight, kernelWidth, inputChannels, outputChannels].
bias (NUMERIC) - Optional 1D bias array with shape [outputChannels]. May be null.
Conv3DConfig - see Conv3DConfig
deconv2d
2D deconvolution operation with optional bias
layerInput (NUMERIC) - the input to deconvolution 2d operation - 4d CNN (image) activations in NCHW format (shape [minibatch, channels, height, width]) or NHWC format (shape [minibatch, height, width, channels])
weights (NUMERIC) - Weights for the 2d deconvolution operation. 4 dimensions with format [inputChannels, outputChannels, kernelHeight, kernelWidth]
bias (NUMERIC) - Optional 1D bias array with shape [outputChannels]. May be null.
DeConv2DConfig - see DeConv2DConfig
deconv3d
3D CNN deconvolution operation with or without optional bias
input (NUMERIC) - Input array - shape [bS, iD, iH, iW, iC] (NDHWC) or [bS, iC, iD, iH, iW] (NCDHW)
weights (NUMERIC) - Weights array - shape [kD, kH, kW, oC, iC]
bias (NUMERIC) - Bias array - optional, may be null. If non-null, must have shape [outputChannels]
DeConv3DConfig - see DeConv3DConfig
depthToSpace
Convolution 2d layer batch to space operation on 4d input. Reduces input channels dimension by rearranging data into a larger spatial dimensions Example: if input has shape [mb, 8, 2, 2] and block size is 2, then output size is [mb, 8/(2_2), 2_2, 2*2]
= [mb, 2, 4, 4]
x (NUMERIC) - the input to depth to space pooling 2d operation - 4d activations in NCHW format (shape [minibatch, channels, height, width]) or NHWC format (shape [minibatch, height, width, channels])
blockSize - Block size, in the height/width dimension
dataFormat - Data format: "NCHW" or "NHWC"
depthWiseConv2d
Depth-wise 2D convolution operation with optional bias
layerInput (NUMERIC) - the input to max pooling 2d operation - 4d CNN (image) activations in NCHW format
depthWeights (NUMERIC) - Depth-wise conv2d weights. 4 dimensions with format [kernelHeight, kernelWidth, inputChannels, depthMultiplier]
bias (NUMERIC) - Optional 1D bias array with shape [outputChannels]. May be null.
Conv2DConfig - see Conv2DConfig
dilation2D
TODO doc string
df (NUMERIC) -
weights (NUMERIC) - df
strides - weights (Size: Exactly(count=2))
rates - strides (Size: Exactly(count=2))
isSameMode - isSameMode
extractImagePatches
Extract image patches
input (NUMERIC) - Input array. Must be rank 4, with shape [minibatch, height, width, channels]
kH - Kernel height
kW - Kernel width
sH - Stride height
sW - Stride width
rH - Rate height
rW - Rate width
sameMode - If true: use same mode padding. If false
im2Col
im2col operation for use in 2D convolution operations. Outputs a 6d array with shape
[minibatch, inputChannels, kernelHeight, kernelWidth, outputHeight, outputWidth]
in (NUMERIC) - Input - rank 4 input with shape [minibatch, inputChannels, height, width]
Conv2DConfig - see Conv2DConfig
localResponseNormalization
2D convolution layer operation - local response normalization
input (NUMERIC) - the inputs to lrn
LocalResponseNormalizationConfig - see LocalResponseNormalizationConfig
maxPoolWithArgmax
2D Convolution layer operation - Max pooling on the input and outputs both max values and indices
input (NUMERIC) - the input to max pooling 2d operation - 4d CNN (image) activations in NCHW format (shape [minibatch, channels, height, width]) or NHWC format (shape [minibatch, height, width, channels])
Pooling2DConfig - see Pooling2DConfig
maxPooling2d
2D Convolution layer operation - max pooling 2d
input (NUMERIC) - the input to max pooling 2d operation - 4d CNN (image) activations in NCHW format (shape [minibatch, channels, height, width]) or NHWC format (shape [minibatch, height, width, channels])
Pooling2DConfig - see Pooling2DConfig
maxPooling3d
3D convolution layer operation - max pooling 3d operation.
input (NUMERIC) - the input to average pooling 3d operation - 5d activations in NCDHW format (shape [minibatch, channels, depth, height, width]) or NDHWC format (shape [minibatch, depth, height, width, channels])
Pooling3DConfig - see Pooling3DConfig
separableConv2d
Separable 2D convolution operation with optional bias
layerInput (NUMERIC) - the input to max pooling 2d operation - 4d CNN (image) activations in NCHW format (shape [minibatch, channels, height, width]) or NHWC format (shape [minibatch, height, width, channels])
depthWeights (NUMERIC) - Separable conv2d depth weights. 4 dimensions with format [kernelHeight, kernelWidth, inputChannels, depthMultiplier]
pointWeights (NUMERIC) - Point weights, rank 4 with format [1, 1, inputChannels*depthMultiplier, outputChannels]. May be null
bias (NUMERIC) - Optional bias, rank 1 with shape [outputChannels]. May be null.
Conv2DConfig - see Conv2DConfig
spaceToBatch
Convolution 2d layer space to batch operation on 4d input.
Increases input batch dimension by rearranging data from spatial dimensions into batch dimension
x (NUMERIC) - Input variable. 4d input
blocks - Block size, in the height/width dimension (Size: Exactly(count=2))
paddingTop - Optional 2d int[] array for padding the result: values [[pad top, pad bottom], [pad left, pad right]] (Size: Exactly(count=2))
paddingBottom - Optional 2d int[] array for padding the result: values [[pad top, pad bottom], [pad left, pad right]] (Size: Exactly(count=2))
spaceToDepth
Convolution 2d layer space to depth operation on 4d input. Increases input channels (reduced spatial dimensions) by rearranging data into a larger channels dimension Example: if input has shape [mb, 2, 4, 4] and block size is 2, then output size is [mb, 8/(2_2), 2_2, 2*2]
= [mb, 2, 4, 4]
x (NUMERIC) - the input to depth to space pooling 2d operation - 4d activations in NCHW format (shape [minibatch, channels, height, width]) or NHWC format (shape [minibatch, height, width, channels])
blockSize - Block size, in the height/width dimension
dataFormat - Data format: "NCHW" or "NHWC"
upsampling2d
Upsampling layer for 2D inputs.
scale is used for both height and width dimensions.
input (NUMERIC) - Input in NCHW format
scale - The scale for both height and width dimensions.
upsampling2d
2D Convolution layer operation - Upsampling 2d
input (NUMERIC) - Input in NCHW format
scaleH - Scale to upsample in height dimension
scaleW - Scale to upsample in width dimension
nchw - If true: input is in NCHW (minibatch, channels, height, width) format. False: NHWC format
upsampling3d
3D Convolution layer operation - Upsampling 3d
input (NUMERIC) - Input in NCHW format
ncdhw - If true: input is in NCDHW (minibatch, channels, depth, height, width) format. False: NDHWC format
scaleD - Scale to upsample in depth dimension
scaleH - Scale to upsample in height dimension
scaleW - Scale to upsample in width dimension
Configuration Classes
Conv1DConfig
k (LONG) - Kernel - default = -1
s (LONG) - stride - default = 1
p (LONG) - padding - default = 0
d (LONG) - dilation - default = 1
isSameMode (BOOL) - Same mode - default = true
dataFormat (STRING) - Data format - default = NCW
Used in these ops: conv1d
Conv2DConfig
kH (LONG) - Kernel height - default = -1
kW (LONG) - Kernel width - default = -1
sH (LONG) - Stride along height dimension - default = 1
sW (LONG) - Stride along width dimension - default = 1
pH (LONG) - Padding along height dimension - default = 0
pW (LONG) - Padding along width dimension - default = 0
dH (LONG) - Dilation along height dimension - default = 1
dW (LONG) - Dilation along width dimension - default = 1
isSameMode (BOOL) - Same mode - default = true
dataFormat (STRING) - Data format - default = NCHW
Used in these ops: col2Im conv2d depthWiseConv2d im2Col separableConv2d
Conv3DConfig
kD (LONG) - Kernel depth - default = -1
kW (LONG) - Kernel width - default = -1
kH (LONG) - Kernel height - default = -1
sD (LONG) - Stride depth - default = 1
sW (LONG) - Stride width - default = 1
sH (LONG) - Stride height - default = 1
pD (LONG) - Padding depth - default = 0
pW (LONG) - Padding width - default = 0
pH (LONG) - Padding height - default = 0
dD (LONG) - Dilation depth - default = 1
dW (LONG) - Dilation width - default = 1
dH (LONG) - Dilation height - default = 1
biasUsed (BOOL) - biasUsed - default = false
isSameMode (BOOL) - Same mode - default = true
dataFormat (STRING) - Data format - default = NDHWC
Used in these ops: conv3d
DeConv2DConfig
kH (LONG) - Kernel height - default = -1
kW (LONG) - Kernel width - default = -1
sH (LONG) - Stride along height dimension - default = 1
sW (LONG) - Stride along width dimension - default = 1
pH (LONG) - Padding along height dimension - default = 0
pW (LONG) - Padding along width dimension - default = 0
dH (LONG) - Dilation along height dimension - default = 1
dW (LONG) - Dilation along width dimension - default = 1
isSameMode (BOOL) - Same mode - default = false
dataFormat (STRING) - Data format - default = NCHW
Used in these ops: deconv2d
DeConv3DConfig
kD (LONG) - Kernel depth - default = -1
kW (LONG) - Kernel width - default = -1
kH (LONG) - Kernel height - default = -1
sD (LONG) - Stride depth - default = 1
sW (LONG) - Stride width - default = 1
sH (LONG) - Stride height - default = 1
pD (LONG) - Padding depth - default = 0
pW (LONG) - Padding width - default = 0
pH (LONG) - Padding height - default = 0
dD (LONG) - Dilation depth - default = 1
dW (LONG) - Dilation width - default = 1
dH (LONG) - Dilation height - default = 1
isSameMode (BOOL) - Same mode - default = false
dataFormat (STRING) - Data format - default = NCDHW
Used in these ops: deconv3d
Pooling2DConfig
kH (LONG) - Kernel height - default = -1
kW (LONG) - Kernel width - default = -1
sH (LONG) - Stride along height dimension - default = 1
sW (LONG) - Stride along width dimension - default = 1
pH (LONG) - Padding along height dimension - default = 0
pW (LONG) - Padding along width dimension - default = 0
dH (LONG) - Dilation along height dimension - default = 1
dW (LONG) - Dilation along width dimension - default = 1
isSameMode (BOOL) - Same mode - default = true
dataFormat (STRING) - Data format - default = nchw
Used in these ops: avgPooling2d maxPoolWithArgmax maxPooling2d
Pooling3DConfig
kD (LONG) - Kernel depth - default = -1
kW (LONG) - Kernel width - default = -1
kH (LONG) - Kernel height - default = -1
sD (LONG) - Stride depth - default = 1
sW (LONG) - Stride width - default = 1
sH (LONG) - Stride height - default = 1
pD (LONG) - Padding depth - default = 0
pW (LONG) - Padding width - default = 0
pH (LONG) - Padding height - default = 0
dD (LONG) - Dilation depth - default = 1
dW (LONG) - Dilation width - default = 1
dH (LONG) - Dilation height - default = 1
isSameMode (BOOL) - Same mode - default = true
dataFormat (STRING) - Data format - default = NCDHW
Used in these ops: avgPooling3d maxPooling3d
LocalResponseNormalizationConfig
alpha (NUMERIC) - alpha - default = 1
beta (NUMERIC) - beta - default = 0.5
bias (NUMERIC) - bias - default = 1
depth (INT) - depth - default = 5
Used in these ops: localResponseNormalization
Last updated