Comment on page
Analysis
Gather statistics on datasets.
Sometimes datasets are too large or too abstract in their format to manually analyze and estimate statistics on certain columns or patterns. DataVec comes with some helper utilities for performing a data analysis, and maximums, means, minimums, and other useful metrics.
If you have loaded your data into Apache Spark, DataVec has a special
AnalyzeSpark
class which can generate histograms, collect statistics, and return information about the quality of the data. Assuming you have already loaded your data into a Spark RDD, pass the JavaRDD
and Schema
to the class.If you are using DataVec in Scala and your data was loaded into a regular
RDD
class, you can convert it by calling .toJavaRDD()
which returns a JavaRDD
. If you need to convert it back, call rdd()
.The code below demonstrates some of many analyses for a 2D dataset in Spark analysis using the RDD
javaRdd
and the schema mySchema
:import org.datavec.spark.transform.AnalyzeSpark;
import org.datavec.api.writable.Writable;
import org.datavec.api.transform.analysis.*;
int maxHistogramBuckets = 10
DataAnalysis analysis = AnalyzeSpark.analyze(mySchema, javaRdd, maxHistogramBuckets)
DataQualityAnalysis analysis = AnalyzeSpark.analyzeQuality(mySchema, javaRdd)
Writable max = AnalyzeSpark.max(javaRdd, "myColumn", mySchema)
int numSamples = 5
List<Writable> sample = AnalyzeSpark.sampleFromColumn(numSamples, "myColumn", mySchema, javaRdd)
Note that if you have sequence data, there are special methods for that as well:
SequenceDataAnalysis seqAnalysis = AnalyzeSpark.analyzeSequence(mySchema, sequenceRdd)
List<Writable> uniqueSequence = AnalyzeSpark.getUniqueSequence("myColumn", seqSchema, sequenceRdd)
The
AnalyzeLocal
class works very similarly to its Spark counterpart and has a similar API. Instead of passing an RDD, it accepts a RecordReader
which allows it to iterate over the dataset.import org.datavec.local.transforms.AnalyzeLocal;
int maxHistogramBuckets = 10
DataAnalysis analysis = AnalyzeLocal.analyze(mySchema, csvRecordReader, maxHistogramBuckets)
Analyse the specified data - returns a DataAnalysis object with summary information about each column
public static DataAnalysis analyze(Schema schema, RecordReader rr, int maxHistogramBuckets)
Analyse the specified data - returns a DataAnalysis object with summary information about each column
- param schema Schema for data
- param rr Data to analyze
- return DataAnalysis for data
public static DataQualityAnalysis analyzeQualitySequence(Schema schema, SequenceRecordReader data)
Analyze the data quality of sequence data - provides a report on missing values, values that don’t comply with schema, etc
- param schema Schema for data
- param data Data to analyze
- return DataQualityAnalysis object
public static DataQualityAnalysis analyzeQuality(final Schema schema, final RecordReader data)
Analyze the data quality of data - provides a report on missing values, values that don’t comply with schema, etc
- param schema Schema for data
- param data Data to analyze
- return DataQualityAnalysis object
AnalizeSpark: static methods for analyzing and
public static SequenceDataAnalysis analyzeSequence(Schema schema, JavaRDD<List<List<Writable>>> data,
int maxHistogramBuckets)
- param schema
- param data
- param maxHistogramBuckets
- return
public static DataAnalysis analyze(Schema schema, JavaRDD<List<Writable>> data)
Analyse the specified data - returns a DataAnalysis object with summary information about each column
- param schema Schema for data
- param data Data to analyze
- return DataAnalysis for data
public static DataQualityAnalysis analyzeQualitySequence(Schema schema, JavaRDD<List<List<Writable>>> data)
Randomly sample values from a single column
- param count Number of values to sample
- param columnName Name of the column to sample from
- param schema Schema
- param data Data to sample from
- return A list of random samples
public static DataQualityAnalysis analyzeQuality(final Schema schema, final JavaRDD<List<Writable>> data)
Analyze the data quality of data - provides a report on missing values, values that don’t comply with schema, etc
- param schema Schema for data
- param data Data to analyze
- return DataQualityAnalysis object
public static Writable min(JavaRDD<List<Writable>> allData, String columnName, Schema schema)
Randomly sample a set of invalid values from a specified column. Values are considered invalid according to the Schema / ColumnMetaData
- param numToSample Maximum number of invalid values to sample
- param columnName Same of the column from which to sample invalid values
- param schema Data schema
- param data Data
- return List of invalid examples
public static Writable max(JavaRDD<List<Writable>> allData, String columnName, Schema schema)
Get the maximum value for the specified column
- param allData All data
- param columnName Name of the column to get the minimum value for
- param schema Schema of the data
- return Maximum value for the column
Last modified 3yr ago