Deeplearning4j
Community ForumND4J JavadocDL4J Javadoc
EN 1.0.0-beta7
EN 1.0.0-beta7
  • Eclipse DeepLearning4J
  • Getting Started
    • Quickstart
      • Untitled
    • Tutorials
      • Quickstart with MNIST
      • MultiLayerNetwork And ComputationGraph
      • Logistic Regression
      • Built-in Data Iterators
      • Feed Forward Networks
      • Basic Autoencoder
      • Advanced Autoencoder
      • Convolutional Networks
      • Recurrent Networks
      • Early Stopping
      • Layers and Preprocessors
      • Hyperparameter Optimization
      • Using Multiple GPUs
      • Clinical Time Series LSTM
      • Sea Temperature Convolutional LSTM
      • Sea Temperature Convolutional LSTM 2
      • Instacart Multitask Example
      • Instacart Single Task Example
      • Cloud Detection Example
    • Core Concepts
    • Cheat Sheet
    • Examples Tour
    • Deep Learning Beginners
    • Build from Source
    • Contribute
      • Eclipse Contributors
    • Benchmark Guide
    • About
    • Release Notes
  • Configuration
    • Backends
      • CPU and AVX
      • cuDNN
      • Performance Issues
    • Memory Management
      • Memory Workspaces
    • Snapshots
    • Maven
    • SBT, Gradle, & Others
  • Models
    • Autoencoders
    • Multilayer Network
    • Computation Graph
    • Convolutional Neural Network
    • Recurrent Neural Network
    • Layers
    • Vertices
    • Iterators
    • Listeners
    • Custom Layers
    • Model Persistence
    • Activations
    • Updaters
  • Model Zoo
    • Overview
    • Zoo Models
  • ND4J
    • Overview
    • Quickstart
    • Basics
    • Elementwise Operations
    • Matrix Manipulation
    • Syntax
    • Tensors
  • SAMEDIFF
    • Importing TensorFlow models
    • Variables
    • Ops
    • Adding Ops
  • ND4J & SameDiff Ops
    • Overview
    • Bitwise
    • Linalg
    • Math
    • Random
    • BaseOps
    • CNN
    • Image
    • Loss
    • NN
    • RNN
  • Tuning & Training
    • Evaluation
    • Visualization
    • Trouble Shooting
    • Early Stopping
    • t-SNE Visualization
    • Transfer Learning
  • Keras Import
    • Overview
    • Get Started
    • Supported Features
      • Activations
      • Losses
      • Regularizers
      • Initializers
      • Constraints
      • Optimizers
    • Functional Model
    • Sequential Model
    • Custom Layers
    • API Reference
      • Core Layers
      • Convolutional Layers
      • Embedding Layers
      • Local Layers
      • Noise Layers
      • Normalization Layers
      • Pooling Layers
      • Recurrent Layers
      • Wrapper Layers
      • Advanced Activations
  • DISTRIBUTED DEEP LEARNING
    • Introduction/Getting Started
    • Technical Explanation
    • Spark Guide
    • Spark Data Pipelines Guide
    • API Reference
    • Parameter Server
  • Arbiter
    • Overview
    • Layer Spaces
    • Parameter Spaces
  • Datavec
    • Overview
    • Records
    • Reductions
    • Schema
    • Serialization
    • Transforms
    • Analysis
    • Readers
    • Conditions
    • Executors
    • Filters
    • Operations
    • Normalization
    • Visualization
  • Language Processing
    • Overview
    • Word2Vec
    • Doc2Vec
    • Sentence Iteration
    • Tokenization
    • Vocabulary Cache
  • Mobile (Android)
    • Setup
    • Tutorial: First Steps
    • Tutorial: Classifier
    • Tutorial: Image Classifier
    • FAQ
    • Press
    • Support
    • Why Deep Learning?
Powered by GitBook
On this page
  • Available reductions
  • GeographicMidpointReduction
  • StringReducer

Was this helpful?

Edit on Git
Export as PDF
  1. Datavec

Reductions

PreviousRecordsNextSchema

Last updated 5 years ago

Was this helpful?

Available reductions

GeographicMidpointReduction

delimiter is configurable), determine the geographic midpoint. See “geographic midpoint” at: For implementation algorithm, see:

transform

public Schema transform(Schema inputSchema) 
  • param delim Delimiter for the coordinates in text format. For example, if format is “lat,long” use “,”

StringReducer

A StringReducer is used to take a set of examples and reduce them. The idea: suppose you have a large number of columns, and you want to combine/reduce the values in each column. StringReducer allows you to specify different reductions for differently for different columns: min, max, sum, mean etc.

Uses are: (1) Reducing examples by a key (2) Reduction operations in time series (windowing ops, etc)

transform

public Schema transform(Schema schema) 

Get the output schema, given the input schema

outputColumnName

public Builder outputColumnName(String outputColumnName) 

Create a StringReducer builder, and set the default column reduction operation. For any columns that aren’t specified explicitly, they will use the default reduction operation. If a column does have a reduction operation explicitly specified, then it will override the default specified here.

  • param defaultOp Default reduction operation to perform

appendColumns

public Builder appendColumns(String... columns) 

Reduce the specified columns by taking the minimum value

prependColumns

public Builder prependColumns(String... columns) 

Reduce the specified columns by taking the maximum value

mergeColumns

public Builder mergeColumns(String... columns) 

Reduce the specified columns by taking the sum of values

replaceColumn

public Builder replaceColumn(String... columns) 

Reduce the specified columns by taking the mean of the values

customReduction

public Builder customReduction(String column, ColumnReduction columnReduction) 

Reduce the specified column using a custom column reduction functionality.

  • param column Column to execute the custom reduction functionality on

  • param columnReduction Column reduction to execute on that column

setIgnoreInvalid

public Builder setIgnoreInvalid(String... columns) 

When doing the reduction: set the specified columns to ignore any invalid values. Invalid: defined as being not valid according to the ColumnMetaData: {- link ColumnMetaData#isValid(Writable)}. For numerical columns, this typically means being unable to parse the Writable. For example, Writable.toLong() failing for a Long column. If the column has any restrictions (min/max values, regex for Strings etc) these will also be taken into account.

  • param columns Columns to set ‘ignore invalid’ for

[source]
http://www.geomidpoint.com/methods.html
http://www.geomidpoint.com/calculation.html
[source]