MultiLayerNetwork And ComputationGraph

DL4J provides the following classes to configure networks:
  1. 1.
  2. 2.
MultiLayerNetwork consists of a single input layer and a single output layer with a stack of layers in between them.
ComputationGraph is used for constructing networks with a more complex architecture than MultiLayerNetwork. It can have multiple input layers, multiple output layers and the layers in between can be connected through a direct acyclic graph.

Network Configurations

Whether you create MultiLayerNetwork or ComputationGraph, you have to provide a network configuration to it through NeuralNetConfiguration.Builder. As the name implies, it provides a Builder pattern to configure a network. To create a MultiLayerNetwork, we build a MultiLayerConfiguraionand for ComputationGraph, it’s ComputationGraphConfiguration.
The pattern goes like this: [High Level Configuration] -> [Configure Layers] -> [Build Configuration]

Required imports

import org.deeplearning4j.nn.conf.graph.MergeVertex
import org.deeplearning4j.nn.conf.layers.{DenseLayer, LSTM, OutputLayer, RnnOutputLayer}
import org.deeplearning4j.nn.conf.{ComputationGraphConfiguration, MultiLayerConfiguration, NeuralNetConfiguration}
import org.deeplearning4j.nn.graph.ComputationGraph
import org.deeplearning4j.nn.multilayer.MultiLayerNetwork
import org.deeplearning4j.nn.weights.WeightInit
import org.nd4j.linalg.activations.Activation
import org.nd4j.linalg.learning.config.Nesterovs
import org.nd4j.linalg.lossfunctions.LossFunctions

Building a MultiLayerConfiguration

val multiLayerConf: MultiLayerConfiguration = new NeuralNetConfiguration.Builder()
.updater(new Nesterovs(0.1, 0.9)) //High Level Configuration
.list() //For configuring MultiLayerNetwork we call the list method
.layer(0, new DenseLayer.Builder().nIn(784).nOut(100).weightInit(WeightInit.XAVIER).activation(Activation.RELU).build()) //Configuring Layers
.layer(1, new OutputLayer.Builder(LossFunctions.LossFunction.XENT).nIn(100).nOut(10).weightInit(WeightInit.XAVIER).activation(Activation.SIGMOID).build())
.build() //Building Configuration

What we did here?

High Level Configuration

For keeping the network outputs reproducible during runs by initializing weights and other network randomizations through a seed
Algorithm to be used for updating the parameters. The first value is the learning rate, the second one is the Nesterov's momentum.

Configuration of Layers

Here we are calling list() to get the ListBuilder. It provides us the necessary api to add layers to the network through the layer(arg1, arg2) function.
  • The first parameter is the index of the position where the layer needs to be added.
  • The second parameter is the type of layer we need to add to the network.
To build and add a layer we use a similar builder pattern as:
The number of inputs coming from the previous layer. (In the first layer, it represents the input it is going to take from the input layer)
he number of outputs it’s going to send to the next layer. (For output layer it represents the labels here)
The type of weights initialization to use for the layer parameters.
The activation function between layers

Building a Graph

Finally, the last build() call builds the configuration for us.

Sanity checking for our MultiLayerConfiguration

You can get your network configuration as String, JSON or YAML for sanity checking. For JSON we can use the toJson() function.

Creating a MultiLayerNetwork

Finally, to create a MultiLayerNetwork, we pass the configuration to it as shown below
val multiLayerNetwork : MultiLayerNetwork = new MultiLayerNetwork(multiLayerConf)

Building a ComputationGraphConfiguration

val computationGraphConf : ComputationGraphConfiguration = new NeuralNetConfiguration.Builder()
.updater(new Nesterovs(0.1, 0.9)) //High Level Configuration
.graphBuilder() //For configuring ComputationGraph we call the graphBuilder method
.addInputs("input") //Configuring Layers
.addLayer("L1", new DenseLayer.Builder().nIn(3).nOut(4).build(), "input")
.addLayer("out1", new OutputLayer.Builder().lossFunction(LossFunctions.LossFunction.NEGATIVELOGLIKELIHOOD).nIn(4).nOut(3).build(), "L1")
.addLayer("out2", new OutputLayer.Builder().lossFunction(LossFunctions.LossFunction.MSE).nIn(4).nOut(2).build(), "L1")
.build() //Building configuration

What we did here?

The only difference here is the way we are building layers. Instead of calling the list() function, we call the graphBuilder() to get a GraphBuilder for building our ComputationGraphConfiguration. Following table explains what each function of a GraphBuilder does.
A list of strings telling the network what layers to use as input layers
First parameter is the layer name, then the layer object and finally a list of strings defined previously to feed this layer as inputs
A list of strings telling the network what layers to use as output layers
The output layers defined here use another function lossFunction to define what loss function to use.

Sanity checking for our ComputationGraphConfiguration

You can get your network configuration as String, JSON or YAML for sanity checking. For JSON we can use the toJson() function

Creating a ComputationGraph

Finally, to create a ComputationGraph, we pass the configuration to it as shown below
val computationGraph : ComputationGraph = new ComputationGraph(computationGraphConf)

More MultiLayerConfiguration Examples


//You can add regularization in the higher level configuration in the network
// configuring a regularization algorithm -> 'l1()', l2()' etc as shown
// below:
new NeuralNetConfiguration.Builder()

Dropout connects

//When creating layers, you can add a dropout connection by using
// 'dropout(<dropOut_factor>)'
new NeuralNetConfiguration.Builder()
.layer(0, new DenseLayer.Builder().dropOut(0.8).build())

Bias initialization

//You can initialize the bias of a particular layer by using
// 'biasInit(<init_value>)'
new NeuralNetConfiguration.Builder()
.layer(0, new DenseLayer.Builder().biasInit(0).build())

More ComputationGraphConfiguration Examples

Recurrent Network

with Skip Connections
val cgConf1 : ComputationGraphConfiguration = new NeuralNetConfiguration.Builder()
.addInputs("input") //can use any label for this
.addLayer("L1", new LSTM.Builder().nIn(5).nOut(5).build(), "input")
.addLayer("L2",new RnnOutputLayer.Builder().nIn(5+5).nOut(5).build(), "input", "L1")

Multiple Inputs and Merge Vertex

//Here MergeVertex concatenates the layer outputs
val cgConf2 : ComputationGraphConfiguration = new NeuralNetConfiguration.Builder()
.addInputs("input1", "input2")
.addLayer("L1", new DenseLayer.Builder().nIn(3).nOut(4).build(), "input1")
.addLayer("L2", new DenseLayer.Builder().nIn(3).nOut(4).build(), "input2")
.addVertex("merge", new MergeVertex(), "L1", "L2")
.addLayer("out", new OutputLayer.Builder().nIn(4+4).nOut(3).build(), "merge")

Multi-Task Learning

val cgConf3 : ComputationGraphConfiguration = new NeuralNetConfiguration.Builder()
.addLayer("L1", new DenseLayer.Builder().nIn(3).nOut(4).build(), "input")
.addLayer("out1", new OutputLayer.Builder()
.nIn(4).nOut(3).build(), "L1")
.addLayer("out2", new OutputLayer.Builder()
.nIn(4).nOut(2).build(), "L1")