Deeplearning4j
Community ForumND4J JavadocDL4J Javadoc
EN 1.0.0-beta7
EN 1.0.0-beta7
  • Eclipse DeepLearning4J
  • Getting Started
    • Quickstart
      • Untitled
    • Tutorials
      • Quickstart with MNIST
      • MultiLayerNetwork And ComputationGraph
      • Logistic Regression
      • Built-in Data Iterators
      • Feed Forward Networks
      • Basic Autoencoder
      • Advanced Autoencoder
      • Convolutional Networks
      • Recurrent Networks
      • Early Stopping
      • Layers and Preprocessors
      • Hyperparameter Optimization
      • Using Multiple GPUs
      • Clinical Time Series LSTM
      • Sea Temperature Convolutional LSTM
      • Sea Temperature Convolutional LSTM 2
      • Instacart Multitask Example
      • Instacart Single Task Example
      • Cloud Detection Example
    • Core Concepts
    • Cheat Sheet
    • Examples Tour
    • Deep Learning Beginners
    • Build from Source
    • Contribute
      • Eclipse Contributors
    • Benchmark Guide
    • About
    • Release Notes
  • Configuration
    • Backends
      • CPU and AVX
      • cuDNN
      • Performance Issues
    • Memory Management
      • Memory Workspaces
    • Snapshots
    • Maven
    • SBT, Gradle, & Others
  • Models
    • Autoencoders
    • Multilayer Network
    • Computation Graph
    • Convolutional Neural Network
    • Recurrent Neural Network
    • Layers
    • Vertices
    • Iterators
    • Listeners
    • Custom Layers
    • Model Persistence
    • Activations
    • Updaters
  • Model Zoo
    • Overview
    • Zoo Models
  • ND4J
    • Overview
    • Quickstart
    • Basics
    • Elementwise Operations
    • Matrix Manipulation
    • Syntax
    • Tensors
  • SAMEDIFF
    • Importing TensorFlow models
    • Variables
    • Ops
    • Adding Ops
  • ND4J & SameDiff Ops
    • Overview
    • Bitwise
    • Linalg
    • Math
    • Random
    • BaseOps
    • CNN
    • Image
    • Loss
    • NN
    • RNN
  • Tuning & Training
    • Evaluation
    • Visualization
    • Trouble Shooting
    • Early Stopping
    • t-SNE Visualization
    • Transfer Learning
  • Keras Import
    • Overview
    • Get Started
    • Supported Features
      • Activations
      • Losses
      • Regularizers
      • Initializers
      • Constraints
      • Optimizers
    • Functional Model
    • Sequential Model
    • Custom Layers
    • API Reference
      • Core Layers
      • Convolutional Layers
      • Embedding Layers
      • Local Layers
      • Noise Layers
      • Normalization Layers
      • Pooling Layers
      • Recurrent Layers
      • Wrapper Layers
      • Advanced Activations
  • DISTRIBUTED DEEP LEARNING
    • Introduction/Getting Started
    • Technical Explanation
    • Spark Guide
    • Spark Data Pipelines Guide
    • API Reference
    • Parameter Server
  • Arbiter
    • Overview
    • Layer Spaces
    • Parameter Spaces
  • Datavec
    • Overview
    • Records
    • Reductions
    • Schema
    • Serialization
    • Transforms
    • Analysis
    • Readers
    • Conditions
    • Executors
    • Filters
    • Operations
    • Normalization
    • Visualization
  • Language Processing
    • Overview
    • Word2Vec
    • Doc2Vec
    • Sentence Iteration
    • Tokenization
    • Vocabulary Cache
  • Mobile (Android)
    • Setup
    • Tutorial: First Steps
    • Tutorial: Classifier
    • Tutorial: Image Classifier
    • FAQ
    • Press
    • Support
    • Why Deep Learning?
Powered by GitBook
On this page
  • KerasSimpleRnn
  • KerasRnnUtils
  • KerasLSTM

Was this helpful?

Edit on Git
Export as PDF
  1. Keras Import
  2. API Reference

Recurrent Layers

PreviousPooling LayersNextWrapper Layers

Last updated 5 years ago

Was this helpful?

KerasSimpleRnn

Imports a Keras SimpleRNN layer as a DL4J SimpleRnn layer.

KerasSimpleRnn

public KerasSimpleRnn(Integer kerasVersion) throws UnsupportedKerasConfigurationException 

Pass-through constructor from KerasLayer

  • param kerasVersion major keras version

  • throws UnsupportedKerasConfigurationException Unsupported Keras config

getSimpleRnnLayer

public Layer getSimpleRnnLayer() 

Constructor from parsed Keras layer configuration dictionary.

  • param layerConfig dictionary containing Keras layer configuration.

  • throws InvalidKerasConfigurationException Invalid Keras config

  • throws UnsupportedKerasConfigurationException Unsupported Keras config

getOutputType

public InputType getOutputType(InputType... inputType) throws InvalidKerasConfigurationException 

Get layer output type.

  • param inputType Array of InputTypes

  • return output type as InputType

  • throws InvalidKerasConfigurationException Invalid Keras config

getNumParams

public int getNumParams() 

Returns number of trainable parameters in layer.

  • return number of trainable parameters (12)

getInputPreprocessor

public InputPreProcessor getInputPreprocessor(InputType... inputType) throws InvalidKerasConfigurationException 

Gets appropriate DL4J InputPreProcessor for given InputTypes.

  • param inputType Array of InputTypes

  • return DL4J InputPreProcessor

  • throws InvalidKerasConfigurationException Invalid Keras configuration exception

  • see org.deeplearning4j.nn.conf.InputPreProcessor

getUnroll

public boolean getUnroll() 

Get whether SimpleRnn layer should be unrolled (for truncated BPTT).

  • return whether RNN should be unrolled (boolean)

setWeights

public void setWeights(Map<String, INDArray> weights) throws InvalidKerasConfigurationException 

Set weights for layer.

  • param weights Simple RNN weights

  • throws InvalidKerasConfigurationException Invalid Keras configuration exception

KerasRnnUtils

Utility functions for Keras RNN layers

getUnrollRecurrentLayer

public static boolean getUnrollRecurrentLayer(KerasLayerConfiguration conf, Map<String, Object> layerConfig)
            throws InvalidKerasConfigurationException 

Get unroll parameter to decide whether to unroll RNN with BPTT or not.

  • param conf KerasLayerConfiguration

  • param layerConfig dictionary containing Keras layer properties

  • return boolean unroll parameter

  • throws InvalidKerasConfigurationException Invalid Keras configuration

getRecurrentDropout

public static double getRecurrentDropout(KerasLayerConfiguration conf, Map<String, Object> layerConfig)
            throws UnsupportedKerasConfigurationException, InvalidKerasConfigurationException 

Get recurrent weight dropout from Keras layer configuration. Non-zero dropout rates are currently not supported.

  • param conf KerasLayerConfiguration

  • param layerConfig dictionary containing Keras layer properties

  • return recurrent dropout rate

  • throws InvalidKerasConfigurationException Invalid Keras configuration

KerasLSTM

Imports a Keras LSTM layer as a DL4J LSTM layer.

KerasLSTM

public KerasLSTM(Integer kerasVersion) throws UnsupportedKerasConfigurationException 

Pass-through constructor from KerasLayer

  • param kerasVersion major keras version

  • throws UnsupportedKerasConfigurationException Unsupported Keras config

getLSTMLayer

public Layer getLSTMLayer() 

Constructor from parsed Keras layer configuration dictionary.

  • param layerConfig dictionary containing Keras layer configuration.

  • throws InvalidKerasConfigurationException Invalid Keras config

  • throws UnsupportedKerasConfigurationException Unsupported Keras config

getOutputType

public InputType getOutputType(InputType... inputType) throws InvalidKerasConfigurationException 

Get layer output type.

  • param inputType Array of InputTypes

  • return output type as InputType

  • throws InvalidKerasConfigurationException Invalid Keras config

getNumParams

public int getNumParams() 

Returns number of trainable parameters in layer.

  • return number of trainable parameters (12)

getInputPreprocessor

public InputPreProcessor getInputPreprocessor(InputType... inputType) throws InvalidKerasConfigurationException 

Gets appropriate DL4J InputPreProcessor for given InputTypes.

  • param inputType Array of InputTypes

  • return DL4J InputPreProcessor

  • throws InvalidKerasConfigurationException Invalid Keras configuration exception

  • see org.deeplearning4j.nn.conf.InputPreProcessor

setWeights

public void setWeights(Map<String, INDArray> weights) throws InvalidKerasConfigurationException 

Set weights for layer.

  • param weights LSTM layer weights

getUnroll

public boolean getUnroll() 

Get whether LSTM layer should be unrolled (for truncated BPTT).

  • return whether to unroll the LSTM

getGateActivationFromConfig

public IActivation getGateActivationFromConfig(Map<String, Object> layerConfig)
            throws InvalidKerasConfigurationException, UnsupportedKerasConfigurationException 

Get LSTM gate activation function from Keras layer configuration.

  • param layerConfig dictionary containing Keras layer configuration

  • return LSTM inner activation function

  • throws InvalidKerasConfigurationException Invalid Keras config

getForgetBiasInitFromConfig

public double getForgetBiasInitFromConfig(Map<String, Object> layerConfig, boolean train)
            throws InvalidKerasConfigurationException, UnsupportedKerasConfigurationException 

Get LSTM forget gate bias initialization from Keras layer configuration.

  • param layerConfig dictionary containing Keras layer configuration

  • return LSTM forget gate bias init

  • throws InvalidKerasConfigurationException Unsupported Keras config

[source]
[source]
[source]