Deeplearning4j
Community ForumND4J JavadocDL4J Javadoc
EN 1.0.0-beta7
EN 1.0.0-beta7
  • Eclipse DeepLearning4J
  • Getting Started
    • Quickstart
      • Untitled
    • Tutorials
      • Quickstart with MNIST
      • MultiLayerNetwork And ComputationGraph
      • Logistic Regression
      • Built-in Data Iterators
      • Feed Forward Networks
      • Basic Autoencoder
      • Advanced Autoencoder
      • Convolutional Networks
      • Recurrent Networks
      • Early Stopping
      • Layers and Preprocessors
      • Hyperparameter Optimization
      • Using Multiple GPUs
      • Clinical Time Series LSTM
      • Sea Temperature Convolutional LSTM
      • Sea Temperature Convolutional LSTM 2
      • Instacart Multitask Example
      • Instacart Single Task Example
      • Cloud Detection Example
    • Core Concepts
    • Cheat Sheet
    • Examples Tour
    • Deep Learning Beginners
    • Build from Source
    • Contribute
      • Eclipse Contributors
    • Benchmark Guide
    • About
    • Release Notes
  • Configuration
    • Backends
      • CPU and AVX
      • cuDNN
      • Performance Issues
    • Memory Management
      • Memory Workspaces
    • Snapshots
    • Maven
    • SBT, Gradle, & Others
  • Models
    • Autoencoders
    • Multilayer Network
    • Computation Graph
    • Convolutional Neural Network
    • Recurrent Neural Network
    • Layers
    • Vertices
    • Iterators
    • Listeners
    • Custom Layers
    • Model Persistence
    • Activations
    • Updaters
  • Model Zoo
    • Overview
    • Zoo Models
  • ND4J
    • Overview
    • Quickstart
    • Basics
    • Elementwise Operations
    • Matrix Manipulation
    • Syntax
    • Tensors
  • SAMEDIFF
    • Importing TensorFlow models
    • Variables
    • Ops
    • Adding Ops
  • ND4J & SameDiff Ops
    • Overview
    • Bitwise
    • Linalg
    • Math
    • Random
    • BaseOps
    • CNN
    • Image
    • Loss
    • NN
    • RNN
  • Tuning & Training
    • Evaluation
    • Visualization
    • Trouble Shooting
    • Early Stopping
    • t-SNE Visualization
    • Transfer Learning
  • Keras Import
    • Overview
    • Get Started
    • Supported Features
      • Activations
      • Losses
      • Regularizers
      • Initializers
      • Constraints
      • Optimizers
    • Functional Model
    • Sequential Model
    • Custom Layers
    • API Reference
      • Core Layers
      • Convolutional Layers
      • Embedding Layers
      • Local Layers
      • Noise Layers
      • Normalization Layers
      • Pooling Layers
      • Recurrent Layers
      • Wrapper Layers
      • Advanced Activations
  • DISTRIBUTED DEEP LEARNING
    • Introduction/Getting Started
    • Technical Explanation
    • Spark Guide
    • Spark Data Pipelines Guide
    • API Reference
    • Parameter Server
  • Arbiter
    • Overview
    • Layer Spaces
    • Parameter Spaces
  • Datavec
    • Overview
    • Records
    • Reductions
    • Schema
    • Serialization
    • Transforms
    • Analysis
    • Readers
    • Conditions
    • Executors
    • Filters
    • Operations
    • Normalization
    • Visualization
  • Language Processing
    • Overview
    • Word2Vec
    • Doc2Vec
    • Sentence Iteration
    • Tokenization
    • Vocabulary Cache
  • Mobile (Android)
    • Setup
    • Tutorial: First Steps
    • Tutorial: Classifier
    • Tutorial: Image Classifier
    • FAQ
    • Press
    • Support
    • Why Deep Learning?
Powered by GitBook
On this page

Was this helpful?

Edit on Git
Export as PDF
  1. Keras Import
  2. API Reference

Wrapper Layers

PreviousRecurrent LayersNextAdvanced Activations

Last updated 5 years ago

Was this helpful?

KerasBidirectional

Builds a DL4J Bidirectional layer from a Keras Bidirectional layer wrapper

KerasBidirectional

public KerasBidirectional(Integer kerasVersion) throws UnsupportedKerasConfigurationException 

Pass-through constructor from KerasLayer

  • param kerasVersion major keras version

  • throws UnsupportedKerasConfigurationException Unsupported Keras config

getUnderlyingRecurrentLayer

public Layer getUnderlyingRecurrentLayer() 

Constructor from parsed Keras layer configuration dictionary.

  • param layerConfig dictionary containing Keras layer configuration

  • throws InvalidKerasConfigurationException Invalid Keras config

  • throws UnsupportedKerasConfigurationException Unsupported Keras config

getBidirectionalLayer

public Bidirectional getBidirectionalLayer() 

Get DL4J Bidirectional layer.

  • return Bidirectional Layer

getOutputType

public InputType getOutputType(InputType... inputType) throws InvalidKerasConfigurationException 

Get layer output type.

  • param inputType Array of InputTypes

  • return output type as InputType

  • throws InvalidKerasConfigurationException Invalid Keras config

getNumParams

public int getNumParams() 

Returns number of trainable parameters in layer.

  • return number of trainable parameters

getInputPreprocessor

public InputPreProcessor getInputPreprocessor(InputType... inputType) throws InvalidKerasConfigurationException 

Gets appropriate DL4J InputPreProcessor for given InputTypes.

  • param inputType Array of InputTypes

  • return DL4J InputPreProcessor

  • throws InvalidKerasConfigurationException Invalid Keras configuration exception

  • see org.deeplearning4j.nn.conf.InputPreProcessor

setWeights

public void setWeights(Map<String, INDArray> weights) throws InvalidKerasConfigurationException 

Set weights for Bidirectional layer.

  • param weights Map of weights

[source]