Deeplearning4j
Community ForumND4J JavadocDL4J Javadoc
EN 1.0.0-beta7
EN 1.0.0-beta7
  • Eclipse DeepLearning4J
  • Getting Started
    • Quickstart
      • Untitled
    • Tutorials
      • Quickstart with MNIST
      • MultiLayerNetwork And ComputationGraph
      • Logistic Regression
      • Built-in Data Iterators
      • Feed Forward Networks
      • Basic Autoencoder
      • Advanced Autoencoder
      • Convolutional Networks
      • Recurrent Networks
      • Early Stopping
      • Layers and Preprocessors
      • Hyperparameter Optimization
      • Using Multiple GPUs
      • Clinical Time Series LSTM
      • Sea Temperature Convolutional LSTM
      • Sea Temperature Convolutional LSTM 2
      • Instacart Multitask Example
      • Instacart Single Task Example
      • Cloud Detection Example
    • Core Concepts
    • Cheat Sheet
    • Examples Tour
    • Deep Learning Beginners
    • Build from Source
    • Contribute
      • Eclipse Contributors
    • Benchmark Guide
    • About
    • Release Notes
  • Configuration
    • Backends
      • CPU and AVX
      • cuDNN
      • Performance Issues
    • Memory Management
      • Memory Workspaces
    • Snapshots
    • Maven
    • SBT, Gradle, & Others
  • Models
    • Autoencoders
    • Multilayer Network
    • Computation Graph
    • Convolutional Neural Network
    • Recurrent Neural Network
    • Layers
    • Vertices
    • Iterators
    • Listeners
    • Custom Layers
    • Model Persistence
    • Activations
    • Updaters
  • Model Zoo
    • Overview
    • Zoo Models
  • ND4J
    • Overview
    • Quickstart
    • Basics
    • Elementwise Operations
    • Matrix Manipulation
    • Syntax
    • Tensors
  • SAMEDIFF
    • Importing TensorFlow models
    • Variables
    • Ops
    • Adding Ops
  • ND4J & SameDiff Ops
    • Overview
    • Bitwise
    • Linalg
    • Math
    • Random
    • BaseOps
    • CNN
    • Image
    • Loss
    • NN
    • RNN
  • Tuning & Training
    • Evaluation
    • Visualization
    • Trouble Shooting
    • Early Stopping
    • t-SNE Visualization
    • Transfer Learning
  • Keras Import
    • Overview
    • Get Started
    • Supported Features
      • Activations
      • Losses
      • Regularizers
      • Initializers
      • Constraints
      • Optimizers
    • Functional Model
    • Sequential Model
    • Custom Layers
    • API Reference
      • Core Layers
      • Convolutional Layers
      • Embedding Layers
      • Local Layers
      • Noise Layers
      • Normalization Layers
      • Pooling Layers
      • Recurrent Layers
      • Wrapper Layers
      • Advanced Activations
  • DISTRIBUTED DEEP LEARNING
    • Introduction/Getting Started
    • Technical Explanation
    • Spark Guide
    • Spark Data Pipelines Guide
    • API Reference
    • Parameter Server
  • Arbiter
    • Overview
    • Layer Spaces
    • Parameter Spaces
  • Datavec
    • Overview
    • Records
    • Reductions
    • Schema
    • Serialization
    • Transforms
    • Analysis
    • Readers
    • Conditions
    • Executors
    • Filters
    • Operations
    • Normalization
    • Visualization
  • Language Processing
    • Overview
    • Word2Vec
    • Doc2Vec
    • Sentence Iteration
    • Tokenization
    • Vocabulary Cache
  • Mobile (Android)
    • Setup
    • Tutorial: First Steps
    • Tutorial: Classifier
    • Tutorial: Image Classifier
    • FAQ
    • Press
    • Support
    • Why Deep Learning?
Powered by GitBook
On this page
  • bernoulli
  • binomial
  • exponential
  • logNormal
  • normal
  • normalTruncated
  • uniform

Was this helpful?

Edit on Git
Export as PDF
  1. ND4J & SameDiff Ops

Random

bernoulli

INDArray bernoulli(double p, DataType datatype, long[] shape)

SDVariable bernoulli(double p, DataType datatype, long[] shape)
SDVariable bernoulli(String name, double p, DataType datatype, long[] shape)

Generate a new random INDArray, where values are randomly sampled according to a Bernoulli distribution,

with the specified probability. Array values will have value 1 with probability P and value 0 with probability

1-P.

  • p - Probability of value 1

  • datatype - Data type of the output variable

  • shape - Shape of the new random INDArray, as a 1D array (Size: AtLeast(min=0))

binomial

INDArray binomial(int nTrials, double p, DataType datatype, long[] shape)

SDVariable binomial(int nTrials, double p, DataType datatype, long[] shape)
SDVariable binomial(String name, int nTrials, double p, DataType datatype, long[] shape)

Generate a new random INDArray, where values are randomly sampled according to a Binomial distribution,

with the specified number of trials and probability.

  • nTrials - Number of trials parameter for the binomial distribution

  • p - Probability of success for each trial

  • datatype - Data type of the output variable

  • shape - Shape of the new random INDArray, as a 1D array (Size: AtLeast(min=0))

exponential

INDArray exponential(double lambda, DataType datatype, long[] shape)

SDVariable exponential(double lambda, DataType datatype, long[] shape)
SDVariable exponential(String name, double lambda, DataType datatype, long[] shape)

Generate a new random INDArray, where values are randomly sampled according to a exponential distribution:

P(x) = lambda exp(-lambda x)

  • lambda - lambda parameter

  • datatype - Data type of the output variable

  • shape - Shape of the new random INDArray, as a 1D array (Size: AtLeast(min=0))

logNormal

INDArray logNormal(double mean, double stddev, DataType datatype, long[] shape)

SDVariable logNormal(double mean, double stddev, DataType datatype, long[] shape)
SDVariable logNormal(String name, double mean, double stddev, DataType datatype, long[] shape)

Generate a new random INDArray, where values are randomly sampled according to a Log Normal distribution,

i.e., log(x) ~ N(mean, stdev)

  • mean - Mean value for the random array

  • stddev - Standard deviation for the random array

  • datatype - Data type of the output variable

  • shape - Shape of the new random INDArray, as a 1D array (Size: AtLeast(min=0))

normal

INDArray normal(double mean, double stddev, DataType datatype, long[] shape)

SDVariable normal(double mean, double stddev, DataType datatype, long[] shape)
SDVariable normal(String name, double mean, double stddev, DataType datatype, long[] shape)

Generate a new random INDArray, where values are randomly sampled according to a Gaussian (normal) distribution,

N(mean, stdev)

  • mean - Mean value for the random array

  • stddev - Standard deviation for the random array

  • datatype - Data type of the output variable

  • shape - Shape of the new random INDArray, as a 1D array (Size: AtLeast(min=0))

normalTruncated

INDArray normalTruncated(double mean, double stddev, DataType datatype, long[] shape)

SDVariable normalTruncated(double mean, double stddev, DataType datatype, long[] shape)
SDVariable normalTruncated(String name, double mean, double stddev, DataType datatype, long[] shape)

Generate a new random INDArray, where values are randomly sampled according to a Gaussian (normal) distribution,

N(mean, stdev). However, any values more than 1 standard deviation from the mean are dropped and re-sampled

  • mean - Mean value for the random array

  • stddev - Standard deviation for the random array

  • datatype - Data type of the output variable

  • shape - Shape of the new random INDArray, as a 1D array (Size: AtLeast(min=0))

uniform

INDArray uniform(double min, double max, DataType datatype, long[] shape)

SDVariable uniform(double min, double max, DataType datatype, long[] shape)
SDVariable uniform(String name, double min, double max, DataType datatype, long[] shape)

Generate a new random INDArray, where values are randomly sampled according to a uniform distribution,

U(min,max)

  • min - Minimum value

  • max - Maximum value.

  • datatype - Data type of the output variable

  • shape - Shape of the new random INDArray, as a 1D array (Size: AtLeast(min=0))

PreviousMathNextBaseOps

Last updated 5 years ago

Was this helpful?