Deeplearning4j
Community ForumND4J JavadocDL4J Javadoc
EN 1.0.0-M1.1
EN 1.0.0-M1.1
  • Deeplearning4j Suite Overview
  • Release Notes
    • 1.0.0-M1.1
    • 1.0.0-M1
    • 1.0.0-beta7
    • 1.0.0-beta6
    • 1.0.0-beta5
    • 1.0.0-beta4
    • 1.0.0-beta3
    • 1.0.0-beta2
    • 1.0.0-beta
    • 1.0.0-alpha
    • 0.9.1
    • 0.9.0
    • 0.8.0
    • 0.7.2
    • 0.7.1
    • 0.7.0
    • 0.6.0
    • 0.5.0
    • 0.4.0
  • Multi-Project
    • Tutorials
      • Beginners
      • Quickstart
    • How To Guides
      • Import in to your favorite IDE
      • Contribute
        • Eclipse Contributors
      • Developer Docs
        • Github Actions/Build Infra
        • Javacpp
        • Release
        • Testing
      • Build From Source
      • Benchmark
      • Beginners
    • Reference
      • Examples Tour
    • Explanation
      • The core workflow
      • Configuration
        • Backends
          • Performance Issues
          • CPU
          • Cudnn
        • Memory
          • Workspaces
      • Build Tools
      • Snapshots
      • Maven
  • Deeplearning4j
    • Tutorials
      • Quick Start
      • Language Processing
        • Doc2Vec
        • Sentence Iterator
        • Tokenization
        • Vocabulary Cache
    • How To Guides
      • Custom Layers
      • Keras Import
        • Functional Models
        • Sequential Models
        • Custom Layers
        • Keras Import API Overview
          • Advanced Activations
          • Convolutional Layers
          • Core Layers
          • Embedding Layers
          • Local Layers
          • Noise Layers
          • Normalization Layers
          • Pooling Layers
          • Recurrent Layers
          • Wrapper Layers
        • Supported Features Overview
          • Activations
          • Constraints
          • Initializers
          • Losses
          • Optimizers
          • Regularizers
      • Tuning and Training
        • Visualization
        • Troubleshooting Training
        • Early Stopping
        • Evaluation
        • Transfer Learning
    • Reference
      • Model Zoo
        • Zoo Models
      • Activations
      • Auto Encoders
      • Computation Graph
      • Convolutional Layers
      • DataSet Iterators
      • Layers
      • Model Listeners
      • Saving and Loading Models
      • Multi Layer Network
      • Recurrent Layers
      • Updaters/Optimizers
      • Vertices
      • Word2vec/Glove/Doc2Vec
    • Explanation
  • datavec
    • Tutorials
      • Overview
    • How To Guides
    • Reference
      • Analysis
      • Conditions
      • Executors
      • Filters
      • Normalization
      • Operations
      • Transforms
      • Readers
      • Records
      • Reductions
      • Schemas
      • Serialization
      • Visualization
    • Explanation
  • Nd4j
    • Tutorials
      • Quickstart
    • How To Guides
      • Other Framework Interop
        • Tensorflow
        • TVM
        • Onnx
      • Matrix Manipulation
      • Element wise Operations
      • Basics
    • Reference
      • Op Descriptor Format
      • Tensor
      • Syntax
    • Explanation
  • Samediff
    • Tutorials
      • Quickstart
    • How To Guides
      • Importing Tensorflow
      • Adding Operations
        • codegen
    • Reference
      • Operation Namespaces
        • Base Operations
        • Bitwise
        • CNN
        • Image
        • LinAlg
        • Loss
        • Math
        • NN
        • Random
        • RNN
      • Variables
    • Explanation
      • Model Import Framework
  • Libnd4j
    • How To Guides
      • Building on Windows
      • Building for raspberry pi or Jetson Nano
      • Building on ios
      • How to Add Operations
      • How to Setup CLion
    • Reference
      • Understanding graph execution
      • Overview of working with libnd4j
      • Helpers Overview (CUDNN, OneDNN,Armcompute)
    • Explanation
  • Python4j
    • Tutorials
      • Quickstart
    • How To Guides
      • Write Python Script
    • Reference
      • Python Types
      • Python Path
      • Garbage Collection
      • Python Script Execution
    • Explanation
  • RL4j
    • Tutorials
    • How To Guides
    • Reference
    • Explanation
  • Spark
    • Tutorials
      • DL4J on Spark Quickstart
    • How To Guides
      • How To
      • Data How To
    • Reference
      • Parameter Server
      • Technical Reference
    • Explanation
      • Spark API Reference
  • codegen
Powered by GitBook
On this page
  • KerasSimpleRnn
  • KerasRnnUtils
  • KerasLSTM

Was this helpful?

Edit on Git
Export as PDF
  1. Deeplearning4j
  2. How To Guides
  3. Keras Import
  4. Keras Import API Overview

Recurrent Layers

PreviousPooling LayersNextWrapper Layers

Was this helpful?

KerasSimpleRnn

Imports a Keras SimpleRNN layer as a DL4J SimpleRnn layer.

KerasSimpleRnn

public KerasSimpleRnn(Integer kerasVersion) throws UnsupportedKerasConfigurationException

Pass-through constructor from KerasLayer

  • param kerasVersion major keras version

  • throws UnsupportedKerasConfigurationException Unsupported Keras config

getSimpleRnnLayer

public Layer getSimpleRnnLayer()

Constructor from parsed Keras layer configuration dictionary.

  • param layerConfig dictionary containing Keras layer configuration.

  • throws InvalidKerasConfigurationException Invalid Keras config

  • throws UnsupportedKerasConfigurationException Unsupported Keras config

getOutputType

public InputType getOutputType(InputType... inputType) throws InvalidKerasConfigurationException

Get layer output type.

  • param inputType Array of InputTypes

  • return output type as InputType

  • throws InvalidKerasConfigurationException Invalid Keras config

getNumParams

public int getNumParams()

Returns number of trainable parameters in layer.

  • return number of trainable parameters (12)

getInputPreprocessor

public InputPreProcessor getInputPreprocessor(InputType... inputType) throws InvalidKerasConfigurationException

Gets appropriate DL4J InputPreProcessor for given InputTypes.

  • param inputType Array of InputTypes

  • return DL4J InputPreProcessor

  • throws InvalidKerasConfigurationException Invalid Keras configuration exception

  • see org.deeplearning4j.nn.conf.InputPreProcessor

getUnroll

public boolean getUnroll()

Get whether SimpleRnn layer should be unrolled (for truncated BPTT).

  • return whether RNN should be unrolled (boolean)

setWeights

public void setWeights(Map<String, INDArray> weights) throws InvalidKerasConfigurationException

Set weights for layer.

  • param weights Simple RNN weights

  • throws InvalidKerasConfigurationException Invalid Keras configuration exception

KerasRnnUtils

Utility functions for Keras RNN layers

getUnrollRecurrentLayer

public static boolean getUnrollRecurrentLayer(KerasLayerConfiguration conf, Map<String, Object> layerConfig)
            throws InvalidKerasConfigurationException

Get unroll parameter to decide whether to unroll RNN with BPTT or not.

  • param conf KerasLayerConfiguration

  • param layerConfig dictionary containing Keras layer properties

  • return boolean unroll parameter

  • throws InvalidKerasConfigurationException Invalid Keras configuration

getRecurrentDropout

public static double getRecurrentDropout(KerasLayerConfiguration conf, Map<String, Object> layerConfig)
            throws UnsupportedKerasConfigurationException, InvalidKerasConfigurationException

Get recurrent weight dropout from Keras layer configuration. Non-zero dropout rates are currently not supported.

  • param conf KerasLayerConfiguration

  • param layerConfig dictionary containing Keras layer properties

  • return recurrent dropout rate

  • throws InvalidKerasConfigurationException Invalid Keras configuration

KerasLSTM

Imports a Keras LSTM layer as a DL4J LSTM layer.

KerasLSTM

public KerasLSTM(Integer kerasVersion) throws UnsupportedKerasConfigurationException

Pass-through constructor from KerasLayer

  • param kerasVersion major keras version

  • throws UnsupportedKerasConfigurationException Unsupported Keras config

getLSTMLayer

public Layer getLSTMLayer()

Constructor from parsed Keras layer configuration dictionary.

  • param layerConfig dictionary containing Keras layer configuration.

  • throws InvalidKerasConfigurationException Invalid Keras config

  • throws UnsupportedKerasConfigurationException Unsupported Keras config

getOutputType

public InputType getOutputType(InputType... inputType) throws InvalidKerasConfigurationException

Get layer output type.

  • param inputType Array of InputTypes

  • return output type as InputType

  • throws InvalidKerasConfigurationException Invalid Keras config

getNumParams

public int getNumParams()

Returns number of trainable parameters in layer.

  • return number of trainable parameters (12)

getInputPreprocessor

public InputPreProcessor getInputPreprocessor(InputType... inputType) throws InvalidKerasConfigurationException

Gets appropriate DL4J InputPreProcessor for given InputTypes.

  • param inputType Array of InputTypes

  • return DL4J InputPreProcessor

  • throws InvalidKerasConfigurationException Invalid Keras configuration exception

  • see org.deeplearning4j.nn.conf.InputPreProcessor

setWeights

public void setWeights(Map<String, INDArray> weights) throws InvalidKerasConfigurationException

Set weights for layer.

  • param weights LSTM layer weights

getUnroll

public boolean getUnroll()

Get whether LSTM layer should be unrolled (for truncated BPTT).

  • return whether to unroll the LSTM

getGateActivationFromConfig

public IActivation getGateActivationFromConfig(Map<String, Object> layerConfig)
            throws InvalidKerasConfigurationException, UnsupportedKerasConfigurationException

Get LSTM gate activation function from Keras layer configuration.

  • param layerConfig dictionary containing Keras layer configuration

  • return LSTM inner activation function

  • throws InvalidKerasConfigurationException Invalid Keras config

getForgetBiasInitFromConfig

public double getForgetBiasInitFromConfig(Map<String, Object> layerConfig, boolean train)
            throws InvalidKerasConfigurationException, UnsupportedKerasConfigurationException

Get LSTM forget gate bias initialization from Keras layer configuration.

  • param layerConfig dictionary containing Keras layer configuration

  • return LSTM forget gate bias init

  • throws InvalidKerasConfigurationException Unsupported Keras config

[source]
[source]
[source]