CNN

Operation classes

avgPooling2d

INDArray avgPooling2d(INDArray input, Pooling2DConfig pooling2DConfig)

SDVariable avgPooling2d(SDVariable input, Pooling2DConfig pooling2DConfig)
SDVariable avgPooling2d(String name, SDVariable input, Pooling2DConfig pooling2DConfig)

2D Convolution layer operation - average pooling 2d

  • input (NUMERIC) - the input to average pooling 2d operation - 4d CNN (image) activations in NCHW format (shape [minibatch, channels, height, width]) or NHWC format (shape [minibatch, height, width, channels])

  • Pooling2DConfig - see Pooling2DConfig

avgPooling3d

INDArray avgPooling3d(INDArray input, Pooling3DConfig pooling3DConfig)

SDVariable avgPooling3d(SDVariable input, Pooling3DConfig pooling3DConfig)
SDVariable avgPooling3d(String name, SDVariable input, Pooling3DConfig pooling3DConfig)

3D convolution layer operation - average pooling 3d

  • input (NUMERIC) - the input to average pooling 3d operation - 5d activations in NCDHW format (shape [minibatch, channels, depth, height, width]) or NDHWC format (shape [minibatch, depth, height, width, channels])

  • Pooling3DConfig - see Pooling3DConfig

batchToSpace

Convolution 2d layer batch to space operation on 4d input.

Reduces input batch dimension by rearranging data into a larger spatial dimensions

  • x (NUMERIC) - Input variable. 4d input

  • blocks - Block size, in the height/width dimension (Size: Exactly(count=2))

  • croppingTop - (Size: Exactly(count=2))

  • croppingBottom - (Size: Exactly(count=2))

col2Im

col2im operation for use in 2D convolution operations. Outputs a 4d array with shape

[minibatch, inputChannels, height, width]

  • in (NUMERIC) - Input - rank 6 input with shape [minibatch, inputChannels, kernelHeight, kernelWidth, outputHeight, outputWidth]

  • Conv2DConfig - see Conv2DConfig

conv1d

Conv1d operation.

  • input (NUMERIC) - the inputs to conv1d

  • weights (NUMERIC) - weights for conv1d op - rank 3 array with shape [kernelSize, inputChannels, outputChannels]

  • bias (NUMERIC) - bias for conv1d op - rank 1 array with shape [outputChannels]. May be null.

  • Conv1DConfig - see Conv1DConfig

conv2d

2D Convolution operation with optional bias

  • layerInput (NUMERIC) - the input to max pooling 2d operation - 4d CNN (image) activations in NCHW format

  • weights (NUMERIC) - Weights for the convolution operation. 4 dimensions with format [kernelHeight, kernelWidth, inputChannels, outputChannels]

  • bias (NUMERIC) - Optional 1D bias array with shape [outputChannels]. May be null.

  • Conv2DConfig - see Conv2DConfig

conv3d

Convolution 3D operation with optional bias

  • input (NUMERIC) - the input to average pooling 3d operation - 5d activations in NCDHW format (shape [minibatch, channels, depth, height, width]) or NDHWC format (shape [minibatch, depth, height, width, channels])

  • weights (NUMERIC) - Weights for conv3d. Rank 5 with shape [kernelDepth, kernelHeight, kernelWidth, inputChannels, outputChannels].

  • bias (NUMERIC) - Optional 1D bias array with shape [outputChannels]. May be null.

  • Conv3DConfig - see Conv3DConfig

deconv2d

2D deconvolution operation with optional bias

  • layerInput (NUMERIC) - the input to deconvolution 2d operation - 4d CNN (image) activations in NCHW format (shape [minibatch, channels, height, width]) or NHWC format (shape [minibatch, height, width, channels])

  • weights (NUMERIC) - Weights for the 2d deconvolution operation. 4 dimensions with format [inputChannels, outputChannels, kernelHeight, kernelWidth]

  • bias (NUMERIC) - Optional 1D bias array with shape [outputChannels]. May be null.

  • DeConv2DConfig - see DeConv2DConfig

deconv3d

3D CNN deconvolution operation with or without optional bias

  • input (NUMERIC) - Input array - shape [bS, iD, iH, iW, iC] (NDHWC) or [bS, iC, iD, iH, iW] (NCDHW)

  • weights (NUMERIC) - Weights array - shape [kD, kH, kW, oC, iC]

  • bias (NUMERIC) - Bias array - optional, may be null. If non-null, must have shape [outputChannels]

  • DeConv3DConfig - see DeConv3DConfig

depthToSpace

Convolution 2d layer batch to space operation on 4d input. Reduces input channels dimension by rearranging data into a larger spatial dimensions Example: if input has shape [mb, 8, 2, 2] and block size is 2, then output size is [mb, 8/(2_2), 2_2, 2*2]

= [mb, 2, 4, 4]

  • x (NUMERIC) - the input to depth to space pooling 2d operation - 4d activations in NCHW format (shape [minibatch, channels, height, width]) or NHWC format (shape [minibatch, height, width, channels])

  • blockSize - Block size, in the height/width dimension

  • dataFormat - Data format: "NCHW" or "NHWC"

depthWiseConv2d

Depth-wise 2D convolution operation with optional bias

  • layerInput (NUMERIC) - the input to max pooling 2d operation - 4d CNN (image) activations in NCHW format

  • depthWeights (NUMERIC) - Depth-wise conv2d weights. 4 dimensions with format [kernelHeight, kernelWidth, inputChannels, depthMultiplier]

  • bias (NUMERIC) - Optional 1D bias array with shape [outputChannels]. May be null.

  • Conv2DConfig - see Conv2DConfig

dilation2D

TODO doc string

  • df (NUMERIC) -

  • weights (NUMERIC) - df

  • strides - weights (Size: Exactly(count=2))

  • rates - strides (Size: Exactly(count=2))

  • isSameMode - isSameMode

extractImagePatches

Extract image patches

  • input (NUMERIC) - Input array. Must be rank 4, with shape [minibatch, height, width, channels]

  • kH - Kernel height

  • kW - Kernel width

  • sH - Stride height

  • sW - Stride width

  • rH - Rate height

  • rW - Rate width

  • sameMode - If true: use same mode padding. If false

im2Col

im2col operation for use in 2D convolution operations. Outputs a 6d array with shape

[minibatch, inputChannels, kernelHeight, kernelWidth, outputHeight, outputWidth]

  • in (NUMERIC) - Input - rank 4 input with shape [minibatch, inputChannels, height, width]

  • Conv2DConfig - see Conv2DConfig

localResponseNormalization

2D convolution layer operation - local response normalization

maxPoolWithArgmax

2D Convolution layer operation - Max pooling on the input and outputs both max values and indices

  • input (NUMERIC) - the input to max pooling 2d operation - 4d CNN (image) activations in NCHW format (shape [minibatch, channels, height, width]) or NHWC format (shape [minibatch, height, width, channels])

  • Pooling2DConfig - see Pooling2DConfig

maxPooling2d

2D Convolution layer operation - max pooling 2d

  • input (NUMERIC) - the input to max pooling 2d operation - 4d CNN (image) activations in NCHW format (shape [minibatch, channels, height, width]) or NHWC format (shape [minibatch, height, width, channels])

  • Pooling2DConfig - see Pooling2DConfig

maxPooling3d

3D convolution layer operation - max pooling 3d operation.

  • input (NUMERIC) - the input to average pooling 3d operation - 5d activations in NCDHW format (shape [minibatch, channels, depth, height, width]) or NDHWC format (shape [minibatch, depth, height, width, channels])

  • Pooling3DConfig - see Pooling3DConfig

separableConv2d

Separable 2D convolution operation with optional bias

  • layerInput (NUMERIC) - the input to max pooling 2d operation - 4d CNN (image) activations in NCHW format (shape [minibatch, channels, height, width]) or NHWC format (shape [minibatch, height, width, channels])

  • depthWeights (NUMERIC) - Separable conv2d depth weights. 4 dimensions with format [kernelHeight, kernelWidth, inputChannels, depthMultiplier]

  • pointWeights (NUMERIC) - Point weights, rank 4 with format [1, 1, inputChannels*depthMultiplier, outputChannels]. May be null

  • bias (NUMERIC) - Optional bias, rank 1 with shape [outputChannels]. May be null.

  • Conv2DConfig - see Conv2DConfig

spaceToBatch

Convolution 2d layer space to batch operation on 4d input.

Increases input batch dimension by rearranging data from spatial dimensions into batch dimension

  • x (NUMERIC) - Input variable. 4d input

  • blocks - Block size, in the height/width dimension (Size: Exactly(count=2))

  • paddingTop - Optional 2d int[] array for padding the result: values [[pad top, pad bottom], [pad left, pad right]] (Size: Exactly(count=2))

  • paddingBottom - Optional 2d int[] array for padding the result: values [[pad top, pad bottom], [pad left, pad right]] (Size: Exactly(count=2))

spaceToDepth

Convolution 2d layer space to depth operation on 4d input. Increases input channels (reduced spatial dimensions) by rearranging data into a larger channels dimension Example: if input has shape [mb, 2, 4, 4] and block size is 2, then output size is [mb, 8/(2_2), 2_2, 2*2]

= [mb, 2, 4, 4]

  • x (NUMERIC) - the input to depth to space pooling 2d operation - 4d activations in NCHW format (shape [minibatch, channels, height, width]) or NHWC format (shape [minibatch, height, width, channels])

  • blockSize - Block size, in the height/width dimension

  • dataFormat - Data format: "NCHW" or "NHWC"

upsampling2d

Upsampling layer for 2D inputs.

scale is used for both height and width dimensions.

  • input (NUMERIC) - Input in NCHW format

  • scale - The scale for both height and width dimensions.

upsampling2d

2D Convolution layer operation - Upsampling 2d

  • input (NUMERIC) - Input in NCHW format

  • scaleH - Scale to upsample in height dimension

  • scaleW - Scale to upsample in width dimension

  • nchw - If true: input is in NCHW (minibatch, channels, height, width) format. False: NHWC format

upsampling3d

3D Convolution layer operation - Upsampling 3d

  • input (NUMERIC) - Input in NCHW format

  • ncdhw - If true: input is in NCDHW (minibatch, channels, depth, height, width) format. False: NDHWC format

  • scaleD - Scale to upsample in depth dimension

  • scaleH - Scale to upsample in height dimension

  • scaleW - Scale to upsample in width dimension

Configuration Classes

Conv1DConfig

  • k (LONG) - Kernel - default = -1

  • s (LONG) - stride - default = 1

  • p (LONG) - padding - default = 0

  • d (LONG) - dilation - default = 1

  • isSameMode (BOOL) - Same mode - default = true

  • dataFormat (STRING) - Data format - default = NCW

Used in these ops: conv1d

Conv2DConfig

  • kH (LONG) - Kernel height - default = -1

  • kW (LONG) - Kernel width - default = -1

  • sH (LONG) - Stride along height dimension - default = 1

  • sW (LONG) - Stride along width dimension - default = 1

  • pH (LONG) - Padding along height dimension - default = 0

  • pW (LONG) - Padding along width dimension - default = 0

  • dH (LONG) - Dilation along height dimension - default = 1

  • dW (LONG) - Dilation along width dimension - default = 1

  • isSameMode (BOOL) - Same mode - default = true

  • dataFormat (STRING) - Data format - default = NCHW

Used in these ops: col2Im conv2d depthWiseConv2d im2Col separableConv2d

Conv3DConfig

  • kD (LONG) - Kernel depth - default = -1

  • kW (LONG) - Kernel width - default = -1

  • kH (LONG) - Kernel height - default = -1

  • sD (LONG) - Stride depth - default = 1

  • sW (LONG) - Stride width - default = 1

  • sH (LONG) - Stride height - default = 1

  • pD (LONG) - Padding depth - default = 0

  • pW (LONG) - Padding width - default = 0

  • pH (LONG) - Padding height - default = 0

  • dD (LONG) - Dilation depth - default = 1

  • dW (LONG) - Dilation width - default = 1

  • dH (LONG) - Dilation height - default = 1

  • biasUsed (BOOL) - biasUsed - default = false

  • isSameMode (BOOL) - Same mode - default = true

  • dataFormat (STRING) - Data format - default = NDHWC

Used in these ops: conv3d

DeConv2DConfig

  • kH (LONG) - Kernel height - default = -1

  • kW (LONG) - Kernel width - default = -1

  • sH (LONG) - Stride along height dimension - default = 1

  • sW (LONG) - Stride along width dimension - default = 1

  • pH (LONG) - Padding along height dimension - default = 0

  • pW (LONG) - Padding along width dimension - default = 0

  • dH (LONG) - Dilation along height dimension - default = 1

  • dW (LONG) - Dilation along width dimension - default = 1

  • isSameMode (BOOL) - Same mode - default = false

  • dataFormat (STRING) - Data format - default = NCHW

Used in these ops: deconv2d

DeConv3DConfig

  • kD (LONG) - Kernel depth - default = -1

  • kW (LONG) - Kernel width - default = -1

  • kH (LONG) - Kernel height - default = -1

  • sD (LONG) - Stride depth - default = 1

  • sW (LONG) - Stride width - default = 1

  • sH (LONG) - Stride height - default = 1

  • pD (LONG) - Padding depth - default = 0

  • pW (LONG) - Padding width - default = 0

  • pH (LONG) - Padding height - default = 0

  • dD (LONG) - Dilation depth - default = 1

  • dW (LONG) - Dilation width - default = 1

  • dH (LONG) - Dilation height - default = 1

  • isSameMode (BOOL) - Same mode - default = false

  • dataFormat (STRING) - Data format - default = NCDHW

Used in these ops: deconv3d

Pooling2DConfig

  • kH (LONG) - Kernel height - default = -1

  • kW (LONG) - Kernel width - default = -1

  • sH (LONG) - Stride along height dimension - default = 1

  • sW (LONG) - Stride along width dimension - default = 1

  • pH (LONG) - Padding along height dimension - default = 0

  • pW (LONG) - Padding along width dimension - default = 0

  • dH (LONG) - Dilation along height dimension - default = 1

  • dW (LONG) - Dilation along width dimension - default = 1

  • isSameMode (BOOL) - Same mode - default = true

  • dataFormat (STRING) - Data format - default = nchw

Used in these ops: avgPooling2d maxPoolWithArgmax maxPooling2d

Pooling3DConfig

  • kD (LONG) - Kernel depth - default = -1

  • kW (LONG) - Kernel width - default = -1

  • kH (LONG) - Kernel height - default = -1

  • sD (LONG) - Stride depth - default = 1

  • sW (LONG) - Stride width - default = 1

  • sH (LONG) - Stride height - default = 1

  • pD (LONG) - Padding depth - default = 0

  • pW (LONG) - Padding width - default = 0

  • pH (LONG) - Padding height - default = 0

  • dD (LONG) - Dilation depth - default = 1

  • dW (LONG) - Dilation width - default = 1

  • dH (LONG) - Dilation height - default = 1

  • isSameMode (BOOL) - Same mode - default = true

  • dataFormat (STRING) - Data format - default = NCDHW

Used in these ops: avgPooling3d maxPooling3d

LocalResponseNormalizationConfig

  • alpha (NUMERIC) - alpha - default = 1

  • beta (NUMERIC) - beta - default = 0.5

  • bias (NUMERIC) - bias - default = 1

  • depth (INT) - depth - default = 5

Used in these ops: localResponseNormalization

Was this helpful?