Supported Features Overview
Supported Keras features.
Keras Model Import: Supported Features
While not every concept in DL4J has an equivalent in Keras and vice versa, many of the key concepts can be matched. Importing keras models into DL4J is done in our deeplearning4j-modelimport module. Below is a comprehensive list of currently supported features.
Note that we also support importing tf.keras models as well. The format only changed a little bit from keras to tf.keras. We handle this transition from beta7 and above.
Mapping keras to DL4J layers is done in the layers sub-module of model import. The structure of this project loosely reflects the structure of Keras.
❌ GRU
✅ LSTM
❌ ConvLSTM2D
✅ Add / add
✅ Multiply / multiply
✅ Subtract / subtract
✅ Average / average
✅ Maximum / maximum
✅ Concatenate / concatenate
❌ Dot / dot
✅ PReLU
✅ ELU
Noise Layers
Layer Wrappers
❌ TimeDistributed
✅ mean_squared_error
✅ mean_absolute_error
✅ mean_absolute_percentage_error
✅ mean_squared_logarithmic_error
✅ squared_hinge
✅ hinge
✅ categorical_hinge
❌ logcosh
✅ categorical_crossentropy
✅ sparse_categorical_crossentropy
✅ binary_crossentropy
✅ kullback_leibler_divergence
✅ poisson
✅ cosine_proximity
✅ softmax
✅ elu
✅ selu
✅ softplus
✅ softsign
✅ relu
✅ tanh
✅ sigmoid
✅ hard_sigmoid
✅ linear
✅ Zeros
✅ Ones
✅ Constant
✅ RandomNormal
✅ RandomUniform
✅ TruncatedNormal
✅ VarianceScaling
✅ Orthogonal
✅ Identity
✅ lecun_uniform
✅ lecun_normal
✅ glorot_normal
✅ glorot_uniform
✅ he_normal
✅ he_uniform
✅ l1
✅ l2
✅ l1_l2
✅ max_norm
✅ non_neg
✅ unit_norm
✅ min_max_norm
✅ SGD
✅ RMSprop
✅ Adagrad
✅ Adadelta
✅ Adam
✅ Adamax
✅ Nadam
❌ TFOptimizer
Was this helpful?